神经形态工程学
MNIST数据库
记忆电阻器
强化学习
计算机科学
材料科学
人工智能
调制(音乐)
适应性学习
人工神经网络
电导
电子工程
计算机体系结构
突触重量
适应(眼睛)
一般化
高效能源利用
电阻随机存取存储器
尖峰神经网络
能量(信号处理)
路径(计算)
机器学习
调度(生产过程)
深度学习
作者
S. S. Jiang,Yanqin Yang,Jiahao Gu,Jinling Zhang,Xingyu Chen,Ziyan Zhang,Jian Su,Jianhua Qiu,Huafei Guo,Quan Xu,Yun Li
标识
DOI:10.1002/adfm.202527371
摘要
ABSTRACT Generalization across diverse tasks is essential for neuromorphic computing hardware based on memristors. Achieving on‐memristor synaptic modulation from short‐term plasticity (STP) to dynamically tuned long‐term potentiation/depression (LTP/LTD) provides a promising path for adaptive learning, addressing the energy‐function trade‐off in neuromorphic learning systems. Here, we present a solution‐processed Ag/Sb 2 Se 3 /HZO/Si memristor fabricated, exhibiting STP, LTP/LTD, and linear conductance modulation with tunable slope. Integrated into an energy‐efficient reservoir computing (RC) system with adaptive pulse periods, the network achieves 90.33% accuracy on MNIST with enhanced energy efficiency and faster convergence. To enhance learning adaptability, we introduce a memristor‐inspired dynamic learning rate scheduling (DLRS) strategy that leverages conductance tunability for stage‐wise training adaptation. This approach enables rapid convergence and strong generalization, achieving 83.69% test accuracy on Fashion‐MNIST, and a prediction error of 1 × 10 −5 on LSTM‐based time‐series forecasting. The DLRS strategy also improves performance for adaptive neuromorphic learning across diverse driving scenarios in reinforcement learning (RL) tasks. Therefore, this work establishes a critical device‐algorithm interface, showcasing the potential of multi‐modal memristors for reconfigurable, energy‐efficient, and self‐adaptive neuromorphic hardware.
科研通智能强力驱动
Strongly Powered by AbleSci AI