Applications of machine learning in metal-organic frameworks

工作流程 多样性(控制论) 领域(数学) 数据科学 人工智能 化学 计算机科学 数据库 数学 纯数学
作者
Sanggyu Chong,Sangwon Lee,Baekjun Kim,Jihan Kim
出处
期刊:Coordination Chemistry Reviews [Elsevier BV]
卷期号:423: 213487-213487 被引量:183
标识
DOI:10.1016/j.ccr.2020.213487
摘要

Machine learning (ML) is the field of computer science where computing systems are trained to perform an analysis of provided data to reveal previously unseen trends and patterns that allow accurate predictions. ML methods have drastically transformed the way scientific research is conducted, making significant contributions in a variety of research fields ranging from natural language processing to drug discovery and materials design. With an abundance of discovered structures and their performance data for various application fields, metal–organic frameworks (MOFs) would undoubtedly benefit from the integration of ML methods for their design and development. In this review, we provide a complete overview of how ML methods can be effectively utilized for MOF research. Various descriptors and representations of MOFs suitable for the ML workflow are first discussed. Then, recent research progresses in which novel ML methods are used to predict various material properties or even design new MOF structures are presented. As many more MOFs are discovered and utilized for various applications, ML will play a much bigger role in their research and development. As such, this review aims to provide readers with basic insights required to comprehend ML-based MOF research, and to help conduct those of their own in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助主旋律采纳,获得10
1秒前
2秒前
3秒前
丶whist完成签到,获得积分10
4秒前
科研通AI5应助Zekun采纳,获得10
5秒前
maoyuni发布了新的文献求助10
5秒前
搜集达人应助茂茂采纳,获得10
7秒前
7秒前
8秒前
深藏blue发布了新的文献求助10
8秒前
田様应助wenlin采纳,获得10
8秒前
可爱的函函应助雪山飞龙采纳,获得10
9秒前
9秒前
杭谷波完成签到,获得积分10
9秒前
李子敬完成签到,获得积分10
10秒前
陈小纯完成签到,获得积分20
11秒前
12秒前
yyx发布了新的文献求助10
13秒前
13秒前
画龙完成签到,获得积分10
14秒前
田様应助云上人采纳,获得10
16秒前
clairevox完成签到,获得积分10
19秒前
科研通AI5应助Adzuki0812采纳,获得10
20秒前
21秒前
21秒前
深情安青应助深藏blue采纳,获得10
22秒前
大模型应助闲得追月时采纳,获得30
23秒前
23秒前
23秒前
Willing发布了新的文献求助10
23秒前
香蕉觅云应助孤独灰狼采纳,获得10
23秒前
24秒前
25秒前
胡先生发布了新的文献求助30
26秒前
云上人发布了新的文献求助10
27秒前
sissi完成签到,获得积分10
27秒前
12138的9527完成签到,获得积分10
27秒前
认真雅阳发布了新的文献求助10
28秒前
28秒前
wenlin发布了新的文献求助10
28秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795227
求助须知:如何正确求助?哪些是违规求助? 3340218
关于积分的说明 10299325
捐赠科研通 3056829
什么是DOI,文献DOI怎么找? 1677185
邀请新用户注册赠送积分活动 805274
科研通“疑难数据库(出版商)”最低求助积分说明 762420