溶剂化
限制
分子动力学
力场(虚构)
计算机科学
UNIFAC公司
工作(物理)
相关性(法律)
领域(数学)
机器学习
统计物理学
人工智能
化学
计算化学
分子
热力学
活度系数
物理
数学
物理化学
工程类
水溶液
有机化学
机械工程
政治学
法学
纯数学
作者
Julia Gebhardt,Matthias Kiesel,Sereina Riniker,Niels Hansen
标识
DOI:10.1021/acs.jcim.0c00479
摘要
Computational prediction of limiting activity coefficients is of great relevance for process design. For highly nonideal mixtures including molecules with directed interactions, methods that maintain the molecular character of the solvent are most promising. Computational expense and force-field deficiencies are the main limiting factors that prevent the use of high-throughput molecular dynamics (MD) simulations in a predictive setup. The combination of MD simulations and machine learning used in this work accounts for both issues. Comparison to published data including free-energy simulations, COSMO-RS and UNIFAC models, reveals competitive prediction accuracy.
科研通智能强力驱动
Strongly Powered by AbleSci AI