Dirichlet-tree multinomial mixtures for clustering microbiome compositions

多项式分布 Dirichlet分布 聚类分析 数学 树(集合论) 统计 组合数学 数学分析 边值问题
作者
Jialiang Mao,Li Ma
出处
期刊:The Annals of Applied Statistics [Institute of Mathematical Statistics]
卷期号:16 (3) 被引量:5
标识
DOI:10.1214/21-aoas1552
摘要

Studying the human microbiome has gained substantial interest in recent years, and a common task in the analysis of these data is to cluster microbiome compositions into subtypes. This subdivision of samples into subgroups serves as an intermediary step in achieving personalized diagnosis and treatment. In applying existing clustering methods to modern microbiome studies including the American Gut Project (AGP) data, we found that this seemingly standard task, however, is very challenging in the microbiome composition context due to several key features of such data. Standard distance-based clustering algorithms generally do not produce reliable results as they do not take into account the heterogeneity of the cross-sample variability among the bacterial taxa, while existing model-based approaches do not allow sufficient flexibility for the identification of complex within-cluster variation from cross-cluster variation. Direct applications of such methods generally lead to overly dispersed clusters in the AGP data and such phenomenon is common for other microbiome data. To overcome these challenges, we introduce Dirichlet-tree multinomial mixtures (DTMM) as a Bayesian generative model for clustering amplicon sequencing data in microbiome studies. DTMM models the microbiome population with a mixture of Dirichlet-tree kernels that utilizes the phylogenetic tree to offer a more flexible covariance structure in characterizing within-cluster variation, and it provides a means for identifying a subset of signature taxa that distinguish the clusters. We perform extensive simulation studies to evaluate the performance of DTMM and compare it to state-of-the-art model-based and distance-based clustering methods in the microbiome context, and carry out a validation study on a publicly available longitudinal data set to confirm the biological relevance of the clusters. Finally, we report a case study on the fecal data from the AGP to identify compositional clusters among individuals with inflammatory bowel disease and diabetes. Among our most interesting findings is that enterotypes (i.e., gut microbiome clusters) are not always defined by the most dominant species as previous analyses had assumed, but can involve a number of less abundant OTUs, which cannot be identified with existing distance-based and method-based approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mipe完成签到,获得积分10
刚刚
Minigun完成签到,获得积分10
1秒前
freedom发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
4秒前
糊涂的百川完成签到,获得积分10
4秒前
情怀应助巧克力素采纳,获得10
5秒前
绳网用户17117496完成签到,获得积分10
5秒前
5秒前
gecko19gecko完成签到,获得积分20
6秒前
开朗含海发布了新的文献求助10
7秒前
桃花源的瓶起子完成签到,获得积分10
8秒前
8秒前
邹栗完成签到,获得积分10
9秒前
9秒前
me1213完成签到,获得积分20
10秒前
11秒前
科研通AI5应助stellafreeman采纳,获得10
11秒前
shime完成签到,获得积分10
11秒前
12秒前
科研通AI5应助宓之云采纳,获得10
12秒前
研友_VZG7GZ应助健忘的初翠采纳,获得10
13秒前
咚咚发布了新的文献求助10
13秒前
小二郎应助迷路的水壶采纳,获得10
13秒前
知更鸟发布了新的文献求助10
14秒前
15秒前
邹栗发布了新的文献求助10
15秒前
Atom发布了新的文献求助20
15秒前
cach完成签到,获得积分10
16秒前
忧郁的小鸭子完成签到,获得积分20
16秒前
pcr163应助freedom采纳,获得30
17秒前
me1213发布了新的文献求助10
18秒前
sy发布了新的文献求助10
19秒前
玄海坊市的青影道完成签到,获得积分10
19秒前
123发布了新的文献求助20
20秒前
科研通AI5应助自然的戒指采纳,获得10
21秒前
SYLH应助zlren采纳,获得10
22秒前
去2完成签到,获得积分10
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784400
求助须知:如何正确求助?哪些是违规求助? 3329418
关于积分的说明 10242321
捐赠科研通 3044942
什么是DOI,文献DOI怎么找? 1671443
邀请新用户注册赠送积分活动 800346
科研通“疑难数据库(出版商)”最低求助积分说明 759372