Emerging Materials for Water-Enabled Electricity Generation

能量转换 工艺工程 计算机科学 发电 可再生能源 纳米技术 生化工程 材料科学 电气工程 工程类 量子力学 热力学 物理 功率(物理)
作者
Yaxin Huang,Huhu Cheng,Liangti Qu
出处
期刊:ACS materials letters [American Chemical Society]
卷期号:3 (2): 193-209 被引量:82
标识
DOI:10.1021/acsmaterialslett.0c00474
摘要

Water is one of the most abundant natural resources on Earth, which has attracted huge research interest in the field of energy harvesting and conversion, because of its environmental friendliness and easy access. Through precise regulation of functional materials and elaborate design of the solid/liquid interface, the interactions between water molecules and functional materials enable the generation of considerable electricity, giving researchers an alternative to extract renewable energy from water. In this Perspective, we will systematically discuss the water-enabled electricity generation (WEG) technologies, based on the interactions between functional materials and water. We mainly classify the WEGs into three types: mechanical-to-electric WEG, thermal-to-electric WEG, and chemical-to-electric WEG, according to the energy source of input water and the mode of energy conversion. For each type of WEG, the basic working principles for generating electricity are outlined, accompanied by a summary and comparison of system structures, working types, and performance characteristics. Recent significant progress in terms of the development of functional materials and the design of devices are emphasized. Efficient strategies involving a deep understanding of the solid/liquid interface and the structure of electric double layer, kinetics of ions adsorption, migration and diffusion or combination thereof, are also discussed. Then, we survey nascent fields promising to advance the development of WEGs, particularly in the area of self-powered and wearable electronics. The general requirements for developing next-generation functional materials for high-performance WEGs are further concluded, as well as standards for WEG’s performance testing. The scientific and technological challenges and opportunities of WEG are finally addressed for future studies and practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lzc发布了新的文献求助10
1秒前
小舒完成签到,获得积分20
2秒前
2秒前
3秒前
3秒前
4秒前
6秒前
6秒前
luanzhaohui发布了新的文献求助10
7秒前
帅帅完成签到,获得积分10
7秒前
Ava应助Toey采纳,获得10
9秒前
naturehome发布了新的文献求助10
9秒前
cctv18给nannan的求助进行了留言
10秒前
liziyuan发布了新的文献求助10
11秒前
lzc完成签到,获得积分10
11秒前
13秒前
13秒前
坚强的广山应助毛毛采纳,获得10
13秒前
亲豆丁儿完成签到,获得积分10
14秒前
绵云冷萃超大杯完成签到,获得积分20
15秒前
Caleb发布了新的文献求助10
17秒前
cctv18应助Atlantis采纳,获得10
18秒前
18秒前
ffhjlfwex完成签到,获得积分10
19秒前
虚心橘子完成签到,获得积分10
21秒前
顾矜应助hyhyhyhy采纳,获得10
22秒前
24秒前
jy发布了新的文献求助10
25秒前
NexusExplorer应助张茂润采纳,获得10
26秒前
27秒前
lin完成签到,获得积分10
27秒前
28秒前
zm应助luanzhaohui采纳,获得50
29秒前
NexusExplorer应助cristin采纳,获得10
32秒前
江泽应助Berner采纳,获得20
33秒前
PingLiu发布了新的文献求助30
36秒前
万能图书馆应助虚心橘子采纳,获得10
37秒前
LXY完成签到,获得积分10
39秒前
39秒前
梦想有研发布了新的文献求助10
41秒前
高分求助中
Hydrological Drought Processes and Estimation Methods for Streamflow and Groundwater 1000
Teaching Social and Emotional Learning in Physical Education 900
Gymnastik für die Jugend 600
Chinese-English Translation Lexicon Version 3.0 500
Electronic Structure Calculations and Structure-Property Relationships on Aromatic Nitro Compounds 500
マンネンタケ科植物由来メロテルペノイド類の網羅的全合成/Collective Synthesis of Meroterpenoids Derived from Ganoderma Family 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 440
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2383988
求助须知:如何正确求助?哪些是违规求助? 2090949
关于积分的说明 5256669
捐赠科研通 1817903
什么是DOI,文献DOI怎么找? 906832
版权声明 559045
科研通“疑难数据库(出版商)”最低求助积分说明 484116