生物
蛋白质组学
蛋白质基因组学
磷酸蛋白质组学
计算生物学
腺癌
表观遗传学
基因
基因组
癌症研究
生物信息学
癌症
遗传学
DNA甲基化
基因组学
蛋白激酶A
磷酸化
基因表达
蛋白质磷酸化
作者
Michael A. Gillette,Shankha Satpathy,Song Cao,Saravana M. Dhanasekaran,Suhas Vasaikar,Karsten Krug,Francesca Petralia,Yize Li,Wen-Wei Liang,Boris Reva,Azra Krek,Jiayi Ji,Xiaoyu Song,Wenke Liu,Runyu Hong,Lijun Yao,Lili M. Blumenberg,Sara R. Savage,Michael C. Wendl,Bo Wen
出处
期刊:Cell
[Cell Press]
日期:2020-07-01
卷期号:182 (1): 200-225.e35
被引量:601
标识
DOI:10.1016/j.cell.2020.06.013
摘要
To explore the biology of lung adenocarcinoma (LUAD) and identify new therapeutic opportunities, we performed comprehensive proteogenomic characterization of 110 tumors and 101 matched normal adjacent tissues (NATs) incorporating genomics, epigenomics, deep-scale proteomics, phosphoproteomics, and acetylproteomics. Multi-omics clustering revealed four subgroups defined by key driver mutations, country, and gender. Proteomic and phosphoproteomic data illuminated biology downstream of copy number aberrations, somatic mutations, and fusions and identified therapeutic vulnerabilities associated with driver events involving KRAS, EGFR, and ALK. Immune subtyping revealed a complex landscape, reinforced the association of STK11 with immune-cold behavior, and underscored a potential immunosuppressive role of neutrophil degranulation. Smoking-associated LUADs showed correlation with other environmental exposure signatures and a field effect in NATs. Matched NATs allowed identification of differentially expressed proteins with potential diagnostic and therapeutic utility. This proteogenomics dataset represents a unique public resource for researchers and clinicians seeking to better understand and treat lung adenocarcinomas.
科研通智能强力驱动
Strongly Powered by AbleSci AI