Machine Learning for Heterogeneous Catalysis: Global Neural Network Potential from Construction to Applications

人工神经网络 计算机科学 人工智能 三元运算 催化作用 机器学习 纳米技术 化学 材料科学 生物化学 程序设计语言
作者
Sicong Ma,Pei‐Lin Kang,Cheng Shang,Zhi‐Pan Liu
出处
期刊:The Royal Society of Chemistry eBooks [The Royal Society of Chemistry]
卷期号:: 488-511 被引量:4
标识
DOI:10.1039/9781839160233-00488
摘要

While the potential energy surface (PES) determines the physicochemical properties of matter, chemical system surfaces are often too complex to solve even with modern computing facilities. Heterogeneous catalysis, being widely utilized in industry, calls for new techniques and methods to resolve the active site structure and reaction intermediates at the atomic scale. In this chapter, we provide an overview of recent theoretical progress on large-scale atomistic simulation via the machine learning global neural network (G-NN) potential developed by our research group in recent years, focusing on methodology and representative applications in heterogeneous catalysis. The combination of global optimization and machine learning provides a convenient and automated way to generate the transferable and robust G-NN potential, which can be utilized to reveal new chemistry from unknown regions of the PES at an affordable computational cost. The predictive power of the G-NN potential is demonstrated in several examples, where the method is applied to explore the material crystal phases and the structure of supported catalysts, to follow surface structure evolution under high-pressure hydrogen and to determine the ternary oxide phase diagram. Limitations and future directions of the G-NN potential method are also discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
boshi发布了新的文献求助10
刚刚
菜菜完成签到,获得积分10
1秒前
隐形曼青应助郭497采纳,获得10
1秒前
科研通AI5应助fanfan采纳,获得10
1秒前
fiercecila完成签到 ,获得积分10
2秒前
jjh完成签到,获得积分10
2秒前
温柔强炫完成签到,获得积分20
2秒前
传奇3应助栗栗采纳,获得50
2秒前
Owen应助lx采纳,获得10
3秒前
3秒前
安逸发布了新的文献求助10
3秒前
3秒前
华仔应助daniel采纳,获得10
3秒前
刚子完成签到,获得积分10
3秒前
4秒前
4秒前
clown发布了新的文献求助10
4秒前
5秒前
5秒前
ddd发布了新的文献求助10
5秒前
小黑哥发布了新的文献求助10
5秒前
小羊123发布了新的文献求助10
5秒前
千千完成签到,获得积分20
5秒前
自然的诗翠完成签到,获得积分10
6秒前
6秒前
赫连砖家完成签到,获得积分10
7秒前
boshi完成签到,获得积分10
7秒前
7秒前
cwy完成签到,获得积分10
7秒前
Janusfaces发布了新的文献求助10
7秒前
垃圾二硫自组装纳米粒完成签到,获得积分10
8秒前
MX应助大作家采纳,获得20
8秒前
iros完成签到,获得积分20
9秒前
9秒前
9秒前
赫连砖家发布了新的文献求助10
9秒前
千千发布了新的文献求助10
9秒前
10秒前
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796310
求助须知:如何正确求助?哪些是违规求助? 3341256
关于积分的说明 10305642
捐赠科研通 3057817
什么是DOI,文献DOI怎么找? 1677946
邀请新用户注册赠送积分活动 805721
科研通“疑难数据库(出版商)”最低求助积分说明 762759