材料科学
钙钛矿(结构)
单层
光伏系统
太阳能电池
光电子学
化学工程
制作
能量转换效率
纳米技术
钙钛矿太阳能电池
病理
替代医学
医学
工程类
生物
生态学
作者
Christian Wolff,Laura Canil,Carolin Rehermann,Ngoc Linh Nguyen,Fengshuo Zu,Maryline Ralaiarisoa,Pietro Caprioglio,Lukas Fiedler,Martin Stolterfoht,Sergio Kogikoski,Ilko Bald,Norbert Koch,Eva Unger,Thomas Dittrich,Antonio Abate,Dieter Neher
出处
期刊:ACS Nano
[American Chemical Society]
日期:2020-01-07
卷期号:14 (2): 1445-1456
被引量:134
标识
DOI:10.1021/acsnano.9b03268
摘要
Perovskite solar cells are among the most exciting photovoltaic systems as they combine low recombination losses, ease of fabrication, and high spectral tunability. The Achilles heel of this technology is the device stability due to the ionic nature of the perovskite crystal, rendering it highly hygroscopic, and the extensive diffusion of ions especially at increased temperatures. Herein, we demonstrate the application of a simple solution-processed perfluorinated self-assembled monolayer (p-SAM) that not only enhances the solar cell efficiency, but also improves the stability of the perovskite absorber and, in turn, the solar cell under increased temperature or humid conditions. The p-i-n-type perovskite devices employing these SAMs exhibited power conversion efficiencies surpassing 21%. Notably, the best performing devices are stable under standardized maximum power point operation at 85 °C in inert atmosphere (ISOS-L-2) for more than 250 h and exhibit superior humidity resilience, maintaining ∼95% device performance even if stored in humid air in ambient conditions over months (∼3000 h, ISOS-D-1). Our work, therefore, demonstrates a strategy towards efficient and stable perovskite solar cells with easily deposited functional interlayers.
科研通智能强力驱动
Strongly Powered by AbleSci AI