Efficient Algorithms for Approximate Single-Source Personalized PageRank Queries

计算机科学 页面排名 搜索引擎索引 随机游动 启发式 节点(物理) 修剪 计算 算法 理论计算机科学 简单(哲学) 数据挖掘 情报检索 数学 统计 生物 认识论 操作系统 结构工程 工程类 哲学 农学
作者
Sibo Wang,Renchi Yang,Runhui Wang,Xiaokui Xiao,Zhewei Wei,Wenqing Lin,Yin Yang,Nan Tang
出处
期刊:ACM Transactions on Database Systems [Association for Computing Machinery]
卷期号:44 (4): 1-37 被引量:51
标识
DOI:10.1145/3360902
摘要

Given a graph G , a source node s, and a target node t , the personalized PageRank ( PPR ) of t with respect to s is the probability that a random walk starting from s terminates at t . An important variant of the PPR query is single-source PPR ( SSPPR ), which enumerates all nodes in G and returns the top- k nodes with the highest PPR values with respect to a given source s . PPR in general and SSPPR in particular have important applications in web search and social networks, e.g., in Twitter’s Who-To-Follow recommendation service. However, PPR computation is known to be expensive on large graphs and resistant to indexing. Consequently, previous solutions either use heuristics, which do not guarantee result quality, or rely on the strong computing power of modern data centers, which is costly. Motivated by this, we propose effective index-free and index-based algorithms for approximate PPR processing, with rigorous guarantees on result quality. We first present FORA, an approximate SSPPR solution that combines two existing methods—Forward Push (which is fast but does not guarantee quality) and Monte Carlo Random Walk (accurate but slow)—in a simple and yet non-trivial way, leading to both high accuracy and efficiency. Further, FORA includes a simple and effective indexing scheme, as well as a module for top- k selection with high pruning power. Extensive experiments demonstrate that the proposed solutions are orders of magnitude more efficient than their respective competitors. Notably, on a billion-edge Twitter dataset, FORA answers a top-500 approximate SSPPR query within 1s, using a single commodity server.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Xinlei发布了新的文献求助10
5秒前
yuan关注了科研通微信公众号
6秒前
Dr. Chen完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
绝味大姨发布了新的文献求助10
7秒前
共享精神应助远方的大树采纳,获得10
8秒前
9秒前
10秒前
10秒前
小李完成签到,获得积分10
10秒前
luan完成签到,获得积分10
10秒前
褚幻香发布了新的文献求助30
11秒前
11秒前
jiangxxxx1发布了新的文献求助30
11秒前
小王完成签到,获得积分10
12秒前
llwxx完成签到,获得积分10
12秒前
盲盒完成签到,获得积分10
13秒前
沉静凡松发布了新的文献求助10
13秒前
13秒前
我是老大应助lizi采纳,获得20
13秒前
Dr. Chen发布了新的文献求助10
15秒前
哪里有人发布了新的文献求助10
15秒前
hsy发布了新的文献求助10
16秒前
18秒前
JingjingWang发布了新的文献求助10
18秒前
善学以致用应助hsy采纳,获得10
19秒前
Mu完成签到,获得积分10
19秒前
jiangxxxx1完成签到,获得积分20
20秒前
21秒前
华仔应助神勇的怜寒采纳,获得10
23秒前
科目三应助cjj采纳,获得10
23秒前
FashionBoy应助cjj采纳,获得10
23秒前
乐乐应助cjj采纳,获得10
23秒前
小二郎应助cjj采纳,获得10
23秒前
脑洞疼应助cjj采纳,获得10
23秒前
852应助cjj采纳,获得10
23秒前
852应助cjj采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5196870
求助须知:如何正确求助?哪些是违规求助? 4378399
关于积分的说明 13636182
捐赠科研通 4233982
什么是DOI,文献DOI怎么找? 2322524
邀请新用户注册赠送积分活动 1320667
关于科研通互助平台的介绍 1271135