材料科学
薄脆饼
异质结
光电子学
晶片键合
纳米技术
作者
Arne Quellmalz,Xiaojing Wang,Simon Sawallich,Burkay Uzlu,Martin Otto,Stefan Wagner,Zhenxing Wang,Maximilian Prechtl,Oliver Hartwig,Siwei Luo,Georg S. Duesberg,Max C. Lemme,Kristinn B. Gylfason,Niclas Roxhed,Göran Stemme,Frank Niklaus
标识
DOI:10.1038/s41467-021-21136-0
摘要
Abstract Integrating two-dimensional (2D) materials into semiconductor manufacturing lines is essential to exploit their material properties in a wide range of application areas. However, current approaches are not compatible with high-volume manufacturing on wafer level. Here, we report a generic methodology for large-area integration of 2D materials by adhesive wafer bonding. Our approach avoids manual handling and uses equipment, processes, and materials that are readily available in large-scale semiconductor manufacturing lines. We demonstrate the transfer of CVD graphene from copper foils (100-mm diameter) and molybdenum disulfide (MoS 2 ) from SiO 2 /Si chips (centimeter-sized) to silicon wafers (100-mm diameter). Furthermore, we stack graphene with CVD hexagonal boron nitride and MoS 2 layers to heterostructures, and fabricate encapsulated field-effect graphene devices, with high carrier mobilities of up to $$4520\;{\mathrm{cm}}^2{\mathrm{V}}^{ - 1}{\mathrm{s}}^{ - 1}$$ 4520 cm 2 V − 1 s − 1 . Thus, our approach is suited for backend of the line integration of 2D materials on top of integrated circuits, with potential to accelerate progress in electronics, photonics, and sensing.
科研通智能强力驱动
Strongly Powered by AbleSci AI