AI applications in renal pathology

肾脏病理学 计算机科学 数字化病理学 人工智能 大数据 医学 深度学习 病理 数据科学 内科学 数据挖掘
作者
Yuankai Huo,Ruining Deng,Quan Liu,Agnes B. Fogo,Haichun Yang
出处
期刊:Kidney International [Elsevier BV]
卷期号:99 (6): 1309-1320 被引量:63
标识
DOI:10.1016/j.kint.2021.01.015
摘要

The explosive growth of artificial intelligence (AI) technologies, especially deep learning methods, has been translated at revolutionary speed to efforts in AI-assisted healthcare. New applications of AI to renal pathology have recently become available, driven by the successful AI deployments in digital pathology. However, synergetic developments of renal pathology and AI require close interdisciplinary collaborations between computer scientists and renal pathologists. Computer scientists should understand that not every AI innovation is translatable to renal pathology, while renal pathologists should capture high-level principles of the relevant AI technologies. Herein, we provide an integrated review on current and possible future applications in AI-assisted renal pathology, by including perspectives from computer scientists and renal pathologists. First, the standard stages, from data collection to analysis, in full-stack AI-assisted renal pathology studies are reviewed. Second, representative renal pathology-optimized AI techniques are introduced. Last, we review current clinical AI applications, as well as promising future applications with the recent advances in AI. The explosive growth of artificial intelligence (AI) technologies, especially deep learning methods, has been translated at revolutionary speed to efforts in AI-assisted healthcare. New applications of AI to renal pathology have recently become available, driven by the successful AI deployments in digital pathology. However, synergetic developments of renal pathology and AI require close interdisciplinary collaborations between computer scientists and renal pathologists. Computer scientists should understand that not every AI innovation is translatable to renal pathology, while renal pathologists should capture high-level principles of the relevant AI technologies. Herein, we provide an integrated review on current and possible future applications in AI-assisted renal pathology, by including perspectives from computer scientists and renal pathologists. First, the standard stages, from data collection to analysis, in full-stack AI-assisted renal pathology studies are reviewed. Second, representative renal pathology-optimized AI techniques are introduced. Last, we review current clinical AI applications, as well as promising future applications with the recent advances in AI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搞怪故事发布了新的文献求助10
2秒前
云泥完成签到 ,获得积分10
3秒前
5秒前
Philthee完成签到,获得积分10
5秒前
新星完成签到 ,获得积分10
6秒前
6秒前
123321发布了新的文献求助50
8秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
11秒前
歪歪打豆豆完成签到,获得积分10
11秒前
12秒前
飞源完成签到,获得积分20
12秒前
zzz完成签到,获得积分20
12秒前
OFish完成签到,获得积分10
13秒前
13秒前
顾矜应助pppy采纳,获得10
13秒前
15秒前
tylerguillam发布了新的文献求助10
15秒前
ASC完成签到 ,获得积分20
15秒前
Kikua发布了新的文献求助10
15秒前
昏睡的蟠桃应助科研通管家采纳,获得200
16秒前
16秒前
16秒前
16秒前
随遇而安应助科研通管家采纳,获得20
16秒前
隐形曼青应助科研通管家采纳,获得10
16秒前
搞怪故事完成签到,获得积分20
17秒前
18秒前
18秒前
racchellll完成签到 ,获得积分10
19秒前
翁戎发布了新的文献求助10
19秒前
飞源发布了新的文献求助10
20秒前
Owen应助bono采纳,获得10
20秒前
武雨寒发布了新的文献求助10
23秒前
灿烂的筝发布了新的文献求助20
24秒前
翁戎完成签到,获得积分10
25秒前
26秒前
飘着的鬼完成签到 ,获得积分10
26秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867299
求助须知:如何正确求助?哪些是违规求助? 3409557
关于积分的说明 10664322
捐赠科研通 3133824
什么是DOI,文献DOI怎么找? 1728495
邀请新用户注册赠送积分活动 833018
科研通“疑难数据库(出版商)”最低求助积分说明 780517