材料科学
卤化物
钙钛矿(结构)
光电流
光伏
结晶度
离子
相(物质)
碘化物
化学物理
光电子学
偏压
光伏系统
无机化学
结晶学
电压
有机化学
复合材料
化学
生态学
物理
生物
量子力学
作者
Diego Di Girolamo,Nga Phung,Felix Utama Kosasih,Francesco Di Giacomo,Fabio Matteocci,Joel A. Smith,Marion A. Flatken,Hans Köbler,Silver‐Hamill Turren‐Cruz,Alessandro Mattoni,Lucio Cinà,B. Rech,Alessandro Latini,Giorgio Divitini,Caterina Ducati,Aldo Di Carlo,Danilo Dini,Antonio Abate
标识
DOI:10.1002/aenm.202000310
摘要
Abstract The operation of halide perovskite optoelectronic devices, including solar cells and LEDs, is strongly influenced by the mobility of ions comprising the crystal structure. This peculiarity is particularly true when considering the long‐term stability of devices. A detailed understanding of the ion migration‐driven degradation pathways is critical to design effective stabilization strategies. Nonetheless, despite substantial research in this first decade of perovskite photovoltaics, the long‐term effects of ion migration remain elusive due to the complex chemistry of lead halide perovskites. By linking materials chemistry to device optoelectronics, this study highlights that electrical bias‐induced perovskite amorphization and phase segregation is a crucial degradation mechanism in planar mixed halide perovskite solar cells. Depending on the biasing potential and the injected charge, halide segregation occurs, forming crystalline iodide‐rich domains, which govern light emission and participate in light absorption and photocurrent generation. Additionally, the loss of crystallinity limits charge collection efficiency and eventually degrades the device performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI