计算机科学
甲骨文公司
题字图形
人工智能
性格(数学)
模式识别(心理学)
数学
几何学
软件工程
作者
Lin Meng,Naoki Kamitoku,Katsuhiro Yamazaki
标识
DOI:10.1109/metroarchaeo43810.2018.9089769
摘要
Oracle bone inscriptions are among the oldest kind of characters in the world and were first inscribed on cattle bone or turtle shells about 3,000 years ago. They were discovered in 1899, and unfortunately very few papers described them. Moreover, the aging process has made the inscriptions less legible. Understanding the inscriptions is important in terms of researching world history, character evaluations, and more. This work introduces a state-of-art initiative to recognize oracle bone inscriptions by deep learning. This is the first time an oracle bone inscription dataset featuring real rubbing images has been generated. For training before recognition, we augment the inscription images by means of rotation, Gaussian noise addition, cutting, brightness changing and inversion, which turns one image into 3,072 new images. We change the dropout, layer number, and filter number of every layer, so as to improve recognition ability and achieve a prefect recognition rate. By analyzing the mistaken recognitions, we identify some special characters that should be given special data augmentation. In an experiment using 184 difference characters and a dataset consisting of 2,000 images including 538 test images, parameter tuning and data augmentation resulted in the recognition rate of 92.3%, and the training data was augmented into 9.69 million items.
科研通智能强力驱动
Strongly Powered by AbleSci AI