Recognition of Oracle Bone Inscriptions Using Deep Learning based on Data Augmentation

计算机科学 甲骨文公司 题字图形 人工智能 性格(数学) 模式识别(心理学) 数学 几何学 软件工程
作者
Lin Meng,Naoki Kamitoku,Katsuhiro Yamazaki
标识
DOI:10.1109/metroarchaeo43810.2018.9089769
摘要

Oracle bone inscriptions are among the oldest kind of characters in the world and were first inscribed on cattle bone or turtle shells about 3,000 years ago. They were discovered in 1899, and unfortunately very few papers described them. Moreover, the aging process has made the inscriptions less legible. Understanding the inscriptions is important in terms of researching world history, character evaluations, and more. This work introduces a state-of-art initiative to recognize oracle bone inscriptions by deep learning. This is the first time an oracle bone inscription dataset featuring real rubbing images has been generated. For training before recognition, we augment the inscription images by means of rotation, Gaussian noise addition, cutting, brightness changing and inversion, which turns one image into 3,072 new images. We change the dropout, layer number, and filter number of every layer, so as to improve recognition ability and achieve a prefect recognition rate. By analyzing the mistaken recognitions, we identify some special characters that should be given special data augmentation. In an experiment using 184 difference characters and a dataset consisting of 2,000 images including 538 test images, parameter tuning and data augmentation resulted in the recognition rate of 92.3%, and the training data was augmented into 9.69 million items.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
鹅鹅鹅完成签到,获得积分10
2秒前
koutianle完成签到 ,获得积分10
3秒前
hhy完成签到,获得积分10
3秒前
4秒前
无尘完成签到 ,获得积分10
5秒前
6秒前
6秒前
washy完成签到 ,获得积分10
7秒前
8秒前
Chunyan_Yu完成签到,获得积分10
9秒前
CC完成签到,获得积分10
10秒前
YJY完成签到 ,获得积分10
11秒前
11秒前
小小杜完成签到,获得积分10
12秒前
兜兜揣满糖完成签到 ,获得积分10
12秒前
依人如梦完成签到 ,获得积分10
12秒前
创不可贴发布了新的文献求助10
14秒前
zhanbin.liang完成签到,获得积分10
16秒前
NexusExplorer应助奋斗的雪碧采纳,获得10
16秒前
华仔应助kjh采纳,获得30
21秒前
李健的小迷弟应助galioo3000采纳,获得10
24秒前
xrzsxiaoli发布了新的文献求助10
25秒前
26秒前
26秒前
keepmoving_12完成签到 ,获得积分10
26秒前
空勒应助哈哈采纳,获得30
28秒前
29秒前
kayaaa完成签到 ,获得积分10
31秒前
31秒前
31秒前
仙贝完成签到,获得积分10
33秒前
34秒前
在水一方应助123456采纳,获得10
35秒前
36秒前
药学人关注了科研通微信公众号
38秒前
38秒前
Swift发布了新的文献求助10
38秒前
虚心的飞雪完成签到,获得积分10
39秒前
43秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4050104
求助须知:如何正确求助?哪些是违规求助? 3588024
关于积分的说明 11401904
捐赠科研通 3314457
什么是DOI,文献DOI怎么找? 1823226
邀请新用户注册赠送积分活动 895332
科研通“疑难数据库(出版商)”最低求助积分说明 816707