Collaborative two-echelon multicenter vehicle routing optimization based on state–space–time network representation

计算机科学 车辆路径问题 运筹学 布线(电子设计自动化) 服务(商务) 分类 数学优化 计算机网络 业务 工程类 数学 营销 程序设计语言
作者
Yong Wang,Yingying Yuan,Xiangyang Guan,Maozeng Xu,Li Wang,Haizhong Wang,Yong Liu
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:258: 120590-120590 被引量:113
标识
DOI:10.1016/j.jclepro.2020.120590
摘要

Collaboration among service providers in a logistics network can greatly increase their operation efficiencies and reduce transportation emissions. This study proposes, formulates and solves a collaborative two-echelon multicenter vehicle routing problem based on a state–space–time (CTMCVRP-SST) network to facilitate collaboration and resource sharing in a multiperiod state–space–time (SST) logistics network. The CTMCVRP-SST aims to facilitate collaboration in logistics networks by leveraging the spatial-temporal properties of logistics demands and resources to optimize the distribution of logistics resources in space and time to meet logistics demands. A three-component solution framework is proposed to solve CTMCVRP-SST. First, a bi-objective linear programming model based on resource sharing in a multiperiod SST network is formulated to minimize the number of vehicles and the total cost of the collaborative operation. Second, an integrated algorithm consisting of SST-based dynamic programming (DP), improved K-means clustering and improved non-dominated sorting genetic algorithm-II (Im-NSGAII) is developed to obtain optimal routes. Third, a cost gap allocation model is employed to design a collaborative mechanism that encourages cooperation among logistics service providers. Using this solution framework, the coalition sequences (i.e., the order of each logistics provider joining a collaborative coalition) are designed and the stability of the coalitions based on profit allocations is studied. Results show that the proposed algorithm outperforms existing algorithms in minimizing the total cost with all other constraints being the same. An empirical case study of a logistics network in Chongqing suggests that the proposed collaboration mechanism with SST network representation can reduce costs, improve transportation efficiency, and contribute to efficient and sustainable logistics network operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
5秒前
6秒前
ding应助lizhiqian2024采纳,获得10
7秒前
郭郭郭发布了新的文献求助10
8秒前
王鹏发布了新的文献求助10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
MM11111应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
MM11111应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
NexusExplorer应助魏晨采纳,获得10
10秒前
11秒前
司徒诗蕾完成签到 ,获得积分10
11秒前
khurram完成签到,获得积分10
13秒前
伊叶之丘完成签到 ,获得积分10
15秒前
王鹏完成签到,获得积分10
16秒前
18秒前
周周发布了新的文献求助10
18秒前
难过的冬云完成签到,获得积分20
18秒前
21秒前
毅青6796发布了新的文献求助30
21秒前
22秒前
万能图书馆应助木南采纳,获得10
22秒前
李浩发布了新的文献求助10
22秒前
伶俐千凝发布了新的文献求助10
26秒前
26秒前
钦钦小豆包给小胡的求助进行了留言
27秒前
VT完成签到,获得积分10
27秒前
Kate发布了新的文献求助10
28秒前
末末完成签到,获得积分10
29秒前
阿南发布了新的文献求助10
30秒前
30秒前
Rain发布了新的文献求助10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781731
求助须知:如何正确求助?哪些是违规求助? 3327303
关于积分的说明 10230369
捐赠科研通 3042188
什么是DOI,文献DOI怎么找? 1669800
邀请新用户注册赠送积分活动 799374
科研通“疑难数据库(出版商)”最低求助积分说明 758792