Transfer learning for time series classification

学习迁移 计算机科学 深度学习 人工智能 卷积神经网络 水准点(测量) 一般化 人工神经网络 机器学习 任务(项目管理) 模式识别(心理学) 数学分析 数学 管理 大地测量学 经济 地理
作者
Hassan Ismail Fawaz,Germain Forestier,Jonathan Weber,Lhassane Idoumghar,Pierre-Alain Müller
出处
期刊:Le Centre pour la Communication Scientifique Directe - HAL - Université de Nantes 被引量:149
标识
DOI:10.1109/bigdata.2018.8621990
摘要

Transfer learning for deep neural networks is the process of first training a base network on a source dataset, and then transferring the learned features (the network's weights) to a second network to be trained on a target dataset. This idea has been shown to improve deep neural network's generalization capabilities in many computer vision tasks such as image recognition and object localization. Apart from these applications, deep Convolutional Neural Networks (CNNs) have also recently gained popularity in the Time Series Classification (TSC) community. However, unlike for image recognition problems, transfer learning techniques have not yet been investigated thoroughly for the TSC task. This is surprising as the accuracy of deep learning models for TSC could potentially be improved if the model is fine-tuned from a pre-trained neural network instead of training it from scratch. In this paper, we fill this gap by investigating how to transfer deep CNNs for the TSC task. To evaluate the potential of transfer learning, we performed extensive experiments using the UCR archive which is the largest publicly available TSC benchmark containing 85 datasets. For each dataset in the archive, we pre-trained a model and then fine-tuned it on the other datasets resulting in 7140 different deep neural networks. These experiments revealed that transfer learning can improve or degrade the model's predictions depending on the dataset used for transfer. Therefore, in an effort to predict the best source dataset for a given target dataset, we propose a new method relying on Dynamic Time Warping to measure inter-datasets similarities. We describe how our method can guide the transfer to choose the best source dataset leading to an improvement in accuracy on 71 out of 85 datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助li采纳,获得10
1秒前
bbpp完成签到,获得积分10
1秒前
1秒前
allglitters完成签到 ,获得积分10
1秒前
hellozijia完成签到,获得积分10
2秒前
Vxfhfdhkcds完成签到 ,获得积分10
2秒前
Jasmineyfz完成签到 ,获得积分10
2秒前
2秒前
3秒前
3秒前
筱泉发布了新的文献求助10
3秒前
3秒前
素月分辉完成签到,获得积分10
3秒前
zhuozhuo发布了新的文献求助10
4秒前
危机的毛衣发布了新的文献求助100
4秒前
liz完成签到 ,获得积分10
4秒前
4秒前
花无缺发布了新的文献求助10
5秒前
MiLi发布了新的文献求助10
5秒前
卡卡咧咧完成签到,获得积分10
6秒前
6秒前
ddog发布了新的文献求助10
6秒前
wodeqiche2007发布了新的文献求助30
6秒前
7秒前
7秒前
好耶123发布了新的文献求助10
7秒前
噗噗蝶pd发布了新的文献求助10
8秒前
零零零零完成签到,获得积分20
8秒前
梦回与她完成签到,获得积分10
8秒前
8秒前
柯燕婷完成签到,获得积分10
8秒前
Zhang发布了新的文献求助10
9秒前
ccc发布了新的文献求助10
10秒前
深情的友易完成签到,获得积分10
10秒前
记录吐吐发布了新的文献求助10
10秒前
124完成签到,获得积分10
10秒前
研友_VZG64n完成签到,获得积分10
11秒前
11秒前
天天快乐应助溜溜梅采纳,获得10
11秒前
草木青完成签到,获得积分10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792971
求助须知:如何正确求助?哪些是违规求助? 3337641
关于积分的说明 10286083
捐赠科研通 3054212
什么是DOI,文献DOI怎么找? 1675888
邀请新用户注册赠送积分活动 803875
科研通“疑难数据库(出版商)”最低求助积分说明 761578