Transfer learning for time series classification

学习迁移 计算机科学 深度学习 人工智能 卷积神经网络 水准点(测量) 一般化 人工神经网络 机器学习 任务(项目管理) 模式识别(心理学) 经济 数学分析 数学 管理 地理 大地测量学
作者
Hassan Ismail Fawaz,Germain Forestier,Jonathan Weber,Lhassane Idoumghar,Pierre-Alain Müller
出处
期刊:Le Centre pour la Communication Scientifique Directe - HAL - Université de Nantes 被引量:149
标识
DOI:10.1109/bigdata.2018.8621990
摘要

Transfer learning for deep neural networks is the process of first training a base network on a source dataset, and then transferring the learned features (the network's weights) to a second network to be trained on a target dataset. This idea has been shown to improve deep neural network's generalization capabilities in many computer vision tasks such as image recognition and object localization. Apart from these applications, deep Convolutional Neural Networks (CNNs) have also recently gained popularity in the Time Series Classification (TSC) community. However, unlike for image recognition problems, transfer learning techniques have not yet been investigated thoroughly for the TSC task. This is surprising as the accuracy of deep learning models for TSC could potentially be improved if the model is fine-tuned from a pre-trained neural network instead of training it from scratch. In this paper, we fill this gap by investigating how to transfer deep CNNs for the TSC task. To evaluate the potential of transfer learning, we performed extensive experiments using the UCR archive which is the largest publicly available TSC benchmark containing 85 datasets. For each dataset in the archive, we pre-trained a model and then fine-tuned it on the other datasets resulting in 7140 different deep neural networks. These experiments revealed that transfer learning can improve or degrade the model's predictions depending on the dataset used for transfer. Therefore, in an effort to predict the best source dataset for a given target dataset, we propose a new method relying on Dynamic Time Warping to measure inter-datasets similarities. We describe how our method can guide the transfer to choose the best source dataset leading to an improvement in accuracy on 71 out of 85 datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Seiswan完成签到,获得积分10
刚刚
星辰完成签到,获得积分10
刚刚
刚刚
wanci应助hxm采纳,获得10
刚刚
希特勒发布了新的文献求助10
刚刚
星辰大海应助Ye采纳,获得10
1秒前
zzuzll完成签到,获得积分10
1秒前
zq发布了新的文献求助10
1秒前
2秒前
2秒前
贝儿发布了新的文献求助10
2秒前
朴素的书琴完成签到,获得积分10
3秒前
3秒前
KKLD完成签到,获得积分10
4秒前
Crystal完成签到,获得积分10
4秒前
听闻发布了新的文献求助10
4秒前
谢亭亭发布了新的文献求助10
5秒前
Invariant发布了新的文献求助30
6秒前
科研人完成签到,获得积分10
6秒前
woshikappa应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得20
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
千风完成签到,获得积分10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
7秒前
酷酷的泥猴桃完成签到,获得积分10
7秒前
7秒前
YY19891219完成签到,获得积分10
7秒前
8秒前
打打应助cyw_1037405062采纳,获得10
8秒前
充电宝应助liangzhy采纳,获得10
9秒前
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Italian Feminism of Sexual Difference: A Different Ecofeminist Thought 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3934751
求助须知:如何正确求助?哪些是违规求助? 3480183
关于积分的说明 11007954
捐赠科研通 3210148
什么是DOI,文献DOI怎么找? 1774043
邀请新用户注册赠送积分活动 860670
科研通“疑难数据库(出版商)”最低求助积分说明 797869