拉回吸引子
独特性
数学
拉回
吸引子
紧凑空间
耗散系统
抛物型偏微分方程
空格(标点符号)
数学分析
纯数学
乘法函数
随机动力系统
随机游动
微分方程
物理
哲学
量子力学
语言学
统计
线性动力系统
线性系统
作者
H. Peter Lu,Jiangang Qi,Bixiang Wang,Mingji Zhang
摘要
We study the asymptotic behavior of a class of non-autonomous non-local fractional stochastic parabolic equation driven by multiplicative white noise on the entire space $\mathbb{R}^n$. We first prove the pathwise well-posedness of the equation and define a continuous non-autonomous cocycle in $L^2({\mathbb{R}} ^n)$. We then prove the existence and uniqueness of tempered pullback attractors for the cocycle under certain dissipative conditions. The periodicity of the tempered attractors is also proved when the deterministic non-autonomous external terms are periodic in time. The pullback asymptotic compactness of the cocycle in $L^2({\mathbb{R}} ^n)$ is established by the uniform estimates on the tails of solutions for sufficiently large space and time variables.
科研通智能强力驱动
Strongly Powered by AbleSci AI