Prediction of Bromate Removal in Drinking Water Using Artificial Neural Networks

溴酸盐 吸附 活性炭 背景(考古学) 体积流量 粒径 人工神经网络 化学 分析化学(期刊) 材料科学 数学 溴化物 环境工程 色谱法 环境科学 机器学习 无机化学 计算机科学 热力学 有机化学 物理化学 古生物学 物理 生物
作者
Erdal Karadurmuş,Nur Taşkın,Eda Göz,Mehmet Yüceer
出处
期刊:Ozone-science & Engineering [Taylor & Francis]
卷期号:41 (2): 118-127 被引量:11
标识
DOI:10.1080/01919512.2018.1510763
摘要

In treatment of natural water resources, bromide transforms into carcinogenic bromate, especially during the ozonation process. Adsorption was used in the experimental part of this study to remove this harmful compound from drinking water. For this purpose, technically, HCl-, NaOH-, and NH3-modified activated carbons were used. Scanning Electron Microscopy (SEM) and Brunauer–Emmett–Teller (BET) analyses were carried out within the characterization study. Moreover, the effects of diameters and heights of adsorption columns, flowrate, and particle size of adsorbent were investigated on the removal amounts of bromate. Optimum conditions were obtained from the experiments, and regional/real samples were collected and analyzed. After the experiments, an artificial neural network (ANN) was used to predict bromate removal percentage by using the observed data. Within this context, a feed-forward back-propagation ANN was chosen in this study. Additionally, the transfer function was selected as tangent sigmoid and 3 neurons were used in the hidden layer. Particle size and amount of the activated carbon, height and diameter of the column, volumetric flowrate, and initial concentration were selected as the input variables. Bromate removal percentage was selected as the output. It was found that the model an R value of 0.988, RMSE value of 3.47 and mean absolute percentage error (MAPE) of 5.19% in the test phase.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhhl2006完成签到,获得积分10
2秒前
肥鹏完成签到,获得积分10
2秒前
Li发布了新的文献求助10
3秒前
ypzhu完成签到,获得积分10
5秒前
5秒前
华仔应助他和她的猫采纳,获得10
5秒前
moya完成签到,获得积分10
6秒前
6秒前
有丶神完成签到,获得积分10
6秒前
7秒前
搜集达人应助紫色系采纳,获得10
7秒前
向阳生长的花完成签到 ,获得积分10
7秒前
胖蛋蛋蛋完成签到,获得积分10
9秒前
10秒前
10秒前
田様应助恋雅颖月采纳,获得10
13秒前
汉堡包应助cxt采纳,获得10
13秒前
CC发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
15秒前
寒冷的平露关注了科研通微信公众号
15秒前
16秒前
16秒前
17秒前
热心的冷松完成签到,获得积分10
18秒前
18秒前
SYLH应助不动的大电视机采纳,获得20
19秒前
Zkxxxx发布了新的文献求助100
20秒前
20秒前
小赖不赖发布了新的文献求助10
20秒前
呆呆江发布了新的文献求助10
20秒前
20秒前
xiaolan发布了新的文献求助10
20秒前
JamesPei应助zhaosh采纳,获得10
21秒前
七熵完成签到 ,获得积分10
22秒前
李健应助CC采纳,获得10
22秒前
guilin完成签到,获得积分20
23秒前
小卷粉发布了新的文献求助30
23秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785875
求助须知:如何正确求助?哪些是违规求助? 3331224
关于积分的说明 10250683
捐赠科研通 3046706
什么是DOI,文献DOI怎么找? 1672190
邀请新用户注册赠送积分活动 801055
科研通“疑难数据库(出版商)”最低求助积分说明 759979