Accurate discrimination of Gastrodia elata from different geographical origins using high‐performance liquid chromatography fingerprint combined with boosting partial least‐squares discriminant analysis

线性判别分析 偏最小二乘回归 Boosting(机器学习) 人工智能 主成分分析 模式识别(心理学) 最优判别分析 数学 色谱法 指纹(计算) 统计 化学 计算机科学
作者
Shanshan Sun,Yancheng Li,Lijun Zhu,Haiyan Ma,Lupan Li,Yufeng Liu
出处
期刊:Journal of Separation Science [Wiley]
卷期号:42 (17): 2875-2882 被引量:19
标识
DOI:10.1002/jssc.201900073
摘要

Abstract Gastrodia elata from different geographical origins varies in quality and pharmacological activity. This study focused on the classification and identification of Gastrodia elata from six producing areas using high‐performance liquid chromatography fingerprint combined with boosting partial least‐squares discriminant analysis. Before recognition analysis, a principal component analysis was applied to ascertain the discrimination possibility with high‐performance liquid chromatography fingerprints. And then, boosting partial least‐squares discriminant analysis and conventional partial least‐squares discriminant analysis were applied in this study. Experimental results indicated that the adaptive iteratively reweighted penalized least‐squares algorithm could eliminate the baseline drift of high‐performance liquid chromatography chromatograms effectively. And compared with partial least‐squares discriminant analysis, the total recognition rates using high‐performance liquid chromatography fingerprint combined with boosting partial least‐squares discriminant analysis for the calibration sets and prediction sets were improved from 94 to 100% and 86 to 97%, respectively. In conclusion, high‐performance liquid chromatography combined with boosting partial least‐squares discriminant analysis, which has such advantages as effective, specific, accurate, non‐polluting, has an edge for discrimination of traditional Chinese medicine from different geographical origins. And the proposed methodology is a useful tool to classify and identify Gastrodia elata from different geographical origins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
简柠完成签到,获得积分10
2秒前
memo发布了新的文献求助10
2秒前
2秒前
3秒前
YXH发布了新的文献求助10
4秒前
小研大究完成签到,获得积分10
4秒前
鲲kun发布了新的文献求助10
5秒前
移动马桶发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
9秒前
小蘑菇应助邓晓霞采纳,获得10
9秒前
我是雅婷完成签到,获得积分10
10秒前
星辰大海应助YXH采纳,获得10
11秒前
桐桐应助ahsh采纳,获得10
11秒前
coconut关注了科研通微信公众号
12秒前
墨尘发布了新的文献求助80
13秒前
memo完成签到,获得积分10
13秒前
JamesPei应助鲲kun采纳,获得10
14秒前
17秒前
18秒前
情怀应助kukude采纳,获得10
19秒前
打打应助腼腆的又晴采纳,获得10
19秒前
南浔完成签到 ,获得积分10
19秒前
高贵的路灯完成签到,获得积分20
19秒前
邓晓霞发布了新的文献求助10
22秒前
23秒前
24秒前
鲲kun完成签到,获得积分20
24秒前
FashionBoy应助阳光的星月采纳,获得10
24秒前
Danny完成签到,获得积分10
26秒前
充电宝应助miku1采纳,获得10
27秒前
pu66发布了新的文献求助10
28秒前
thisky完成签到,获得积分10
28秒前
李健应助灵巧的手机采纳,获得10
28秒前
太吾墨完成签到,获得积分10
29秒前
coconut发布了新的文献求助10
30秒前
30秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843681
求助须知:如何正确求助?哪些是违规求助? 3385989
关于积分的说明 10543401
捐赠科研通 3106790
什么是DOI,文献DOI怎么找? 1711162
邀请新用户注册赠送积分活动 823937
科研通“疑难数据库(出版商)”最低求助积分说明 774390