积分器
MATLAB语言
相空间
常微分方程
高斯
计算机科学
数值积分
变量(数学)
微分方程
数学
应用数学
算法
数学分析
带宽(计算)
物理
计算机网络
量子力学
热力学
操作系统
作者
Guillaume Chauvon,P. Saucez,Alain Vande Wouwer
出处
期刊:Simulation
[SAGE Publishing]
日期:2019-04-08
卷期号:95 (11): 1055-1067
被引量:2
标识
DOI:10.1177/0037549719835026
摘要
Geometric integrators allow preservation of specific geometric properties of the exact flow of differential equation systems, such as energy, phase-space volume, and time-reversal symmetry, and are particularly reliable for long-run integration. In this study, variable step size composition methods and Gauss methods are implemented in Matlab library integrators, and are tested with several representative problems, including the Kepler problem, the outer solar system and a conservative Lotka–Volterra system. Variable step size integrators often perform better than their fixed step size counterparts and the numerical results show excellent long time preservation of the Hamiltonian in these examples.
科研通智能强力驱动
Strongly Powered by AbleSci AI