Development of a Correlative Strategy To Discover Colorectal Tumor Tissue Derived Metabolite Biomarkers in Plasma Using Untargeted Metabolomics

代谢物 代谢组学 结直肠癌 代谢物分析 生物标志物 化学 癌症 病态的 生物标志物发现 肿瘤科 内科学 计算生物学 生物信息学 医学 生物 蛋白质组学 生物化学 基因
作者
Zhuozhong Wang,Binbin Cui,Fan Zhang,Yue Yang,Xiaotao Shen,Zhong Li,Weiwei Zhao,Yuanyuan Zhang,Kui Deng,Zhiwei Rong,Kai Yang,Xiwen Yu,Kang Li,Peng Han,Zheng‐Jiang Zhu
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:91 (3): 2401-2408 被引量:46
标识
DOI:10.1021/acs.analchem.8b05177
摘要

The metabolic profiling of biofluids using untargeted metabolomics provides a promising choice to discover metabolite biomarkers for clinical cancer diagnosis. However, metabolite biomarkers discovered in biofluids may not necessarily reflect the pathological status of tumor tissue, which makes these biomarkers difficult to reproduce. In this study, we developed a new analysis strategy by integrating the univariate and multivariate correlation analysis approach to discover tumor tissue derived (TTD) metabolites in plasma samples. Specifically, untargeted metabolomics was first used to profile a set of paired tissue and plasma samples from 34 colorectal cancer (CRC) patients. Next, univariate correlation analysis was used to select correlative metabolite pairs between tissue and plasma, and a random forest regression model was utilized to define 243 TTD metabolites in plasma samples. The TTD metabolites in CRC plasma were demonstrated to accurately reflect the pathological status of tumor tissue and have great potential for metabolite biomarker discovery. Accordingly, we conducted a clinical study using a set of 146 plasma samples from CRC patients and gender-matched polyp controls to discover metabolite biomarkers from TTD metabolites. As a result, eight metabolites were selected as potential biomarkers for CRC diagnosis with high sensitivity and specificity. For CRC patients after surgery, the survival risk score defined by metabolite biomarkers also performed well in predicting overall survival time (p = 0.022) and progression-free survival time (p = 0.002). In conclusion, we developed a new analysis strategy which effectively discovers tumor tissue related metabolite biomarkers in plasma for cancer diagnosis and prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丁真先生发布了新的文献求助10
1秒前
3秒前
万能图书馆应助zzduo采纳,获得10
3秒前
风起人散完成签到,获得积分10
4秒前
营养快炫发布了新的文献求助10
5秒前
阿仔爱学习完成签到,获得积分10
7秒前
8秒前
领导范儿应助MaRin采纳,获得10
9秒前
12秒前
Joeswith完成签到,获得积分10
12秒前
绿端发布了新的文献求助10
12秒前
13秒前
大清发布了新的文献求助10
13秒前
Jasper应助ZGQ采纳,获得10
14秒前
superxin完成签到,获得积分10
15秒前
chocolat发布了新的文献求助10
15秒前
科研通AI5应助xin采纳,获得10
17秒前
17秒前
zzduo发布了新的文献求助10
17秒前
18秒前
ID8完成签到,获得积分10
21秒前
大模型应助大清采纳,获得10
21秒前
科目三应助shuaishuai2022采纳,获得10
21秒前
科研通AI5应助清脆的一斩采纳,获得10
22秒前
桐桐应助番茄酱采纳,获得10
22秒前
baimengmeng完成签到,获得积分10
23秒前
家正发布了新的文献求助10
23秒前
ID8发布了新的文献求助10
23秒前
chu完成签到,获得积分10
23秒前
科研通AI5应助666采纳,获得10
23秒前
在水一方应助江川采纳,获得10
24秒前
好了没了完成签到,获得积分10
25秒前
JamesPei应助林沐雨采纳,获得10
26秒前
26秒前
29秒前
chu发布了新的文献求助10
29秒前
非哲完成签到 ,获得积分10
29秒前
清脆的一斩完成签到,获得积分10
30秒前
AHR发布了新的文献求助10
30秒前
华仔应助尊敬雨双采纳,获得10
31秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812792
求助须知:如何正确求助?哪些是违规求助? 3357308
关于积分的说明 10385888
捐赠科研通 3074504
什么是DOI,文献DOI怎么找? 1688855
邀请新用户注册赠送积分活动 812373
科研通“疑难数据库(出版商)”最低求助积分说明 767066