聚偏氟乙烯
石墨烯
碳纳米管
材料科学
电磁屏蔽
纳米复合材料
复合材料
氟化物
电磁干扰
纳米管
纳米技术
聚合物
化学
无机化学
计算机科学
电信
作者
Mohammad Arjmand,Soheil Sadeghi,I. Navas,Yalda Zamani Keteklahijani,Sara Dordanihaghighi,Uttandaraman Sundararaj
出处
期刊:Polymers
[Multidisciplinary Digital Publishing Institute]
日期:2019-06-20
卷期号:11 (6): 1064-1064
被引量:34
标识
DOI:10.3390/polym11061064
摘要
The similar molecular structure but different geometries of the carbon nanotube (CNT) and graphene nanoribbon (GNR) create a genuine opportunity to assess the impact of nanofiller geometry (tube vs. ribbon) on the electromagnetic interference (EMI) shielding of polymer nanocomposites. In this regard, GNR and its parent CNT were melt mixed with a polyvinylidene fluoride (PVDF) matrix using a miniature melt mixer at various nanofiller loadings, i.e., 0.3, 0.5, 1.0 and 2.0 wt%, and then compression molded. Molecular simulations showed that CNT would have a better interaction with the PVDF matrix in any configuration. Rheological results validated that CNTs feature a far stronger network (mechanical interlocking) than GNRs. Despite lower powder conductivity and a comparable dispersion state, it was interestingly observed that CNT nanocomposites indicated a highly superior electrical conductivity and EMI shielding at higher nanofiller loadings. For instance, at 2.0 wt%, CNT/PVDF nanocomposites showed an electrical conductivity of 0.77 S·m−1 and an EMI shielding effectiveness of 11.60 dB, which are eight orders of magnitude and twofold higher than their GNR counterparts, respectively. This observation was attributed to their superior conductive network formation and the interlocking ability of the tubular nanostructure to the ribbon-like nanostructure, verified by molecular simulations and rheological assays.
科研通智能强力驱动
Strongly Powered by AbleSci AI