清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Comparison and assessment of family- and population-based genotype imputation methods in large pedigrees

插补(统计学) 系谱图 人口 次等位基因频率 1000基因组计划 生物 全基因组关联研究 统计 遗传学 缺少数据 等位基因频率 基因型 数学 单核苷酸多态性 人口学 基因 社会学
作者
Ehsan Ullah,Raghvendra Mall,Mostafa Abbas,Khalid Kunji,Alejandro Q. Nato,Halima Bensmail,Ellen M. Wijsman,Mohamad Saad
出处
期刊:Genome Research [Cold Spring Harbor Laboratory]
卷期号:29 (1): 125-134 被引量:26
标识
DOI:10.1101/gr.236315.118
摘要

Genotype imputation is widely used in genome-wide association studies to boost variant density, allowing increased power in association testing. Many studies currently include pedigree data due to increasing interest in rare variants coupled with the availability of appropriate analysis tools. The performance of population-based (subjects are unrelated) imputation methods is well established. However, the performance of family- and population-based imputation methods on family data has been subject to much less scrutiny. Here, we extensively compare several family- and population-based imputation methods on family data of large pedigrees with both European and African ancestry. Our comparison includes many widely used family- and population-based tools and another method, Ped_Pop, which combines family- and population-based imputation results. We also compare four subject selection strategies for full sequencing to serve as the reference panel for imputation: GIGI-Pick, ExomePicks, PRIMUS, and random selection. Moreover, we compare two imputation accuracy metrics: the Imputation Quality Score and Pearson's correlation R 2 for predicting power of association analysis using imputation results. Our results show that (1) GIGI outperforms Merlin; (2) family-based imputation outperforms population-based imputation for rare variants but not for common ones; (3) combining family- and population-based imputation outperforms all imputation approaches for all minor allele frequencies; (4) GIGI-Pick gives the best selection strategy based on the R 2 criterion; and (5) R 2 is the best measure of imputation accuracy. Our study is the first to extensively evaluate the imputation performance of many available family- and population-based tools on the same family data and provides guidelines for future studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LINDENG2004完成签到 ,获得积分10
30秒前
37秒前
包破茧发布了新的文献求助10
42秒前
魁梧的衫完成签到 ,获得积分10
43秒前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
hugeyoung发布了新的文献求助10
1分钟前
小目标完成签到,获得积分10
1分钟前
Serena完成签到 ,获得积分10
1分钟前
科研狗完成签到 ,获得积分10
1分钟前
lunhui6453完成签到 ,获得积分10
1分钟前
hellokitty完成签到,获得积分10
1分钟前
Broadway Zhang完成签到,获得积分10
2分钟前
拼搏问薇完成签到 ,获得积分10
2分钟前
搜集达人应助科研通管家采纳,获得10
3分钟前
Magali发布了新的文献求助20
3分钟前
李健应助yukky采纳,获得50
3分钟前
3分钟前
迷茫的一代完成签到,获得积分10
3分钟前
Paridis发布了新的文献求助10
3分钟前
zzhui完成签到,获得积分10
4分钟前
4分钟前
苗条白枫完成签到 ,获得积分10
4分钟前
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
5分钟前
无花果应助科研通管家采纳,获得10
5分钟前
李爱国应助科研通管家采纳,获得10
5分钟前
5分钟前
yukky发布了新的文献求助50
5分钟前
科研通AI2S应助444采纳,获得10
5分钟前
5分钟前
挽歌完成签到 ,获得积分10
6分钟前
6分钟前
mix完成签到 ,获得积分10
6分钟前
袁青寒发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773074
求助须知:如何正确求助?哪些是违规求助? 5606223
关于积分的说明 15430395
捐赠科研通 4905760
什么是DOI,文献DOI怎么找? 2639706
邀请新用户注册赠送积分活动 1587639
关于科研通互助平台的介绍 1542596