NADPH Thioredoxin Reductase C and Thioredoxins Act Concertedly in Seedling Development

铁氧还蛋白 硫氧还蛋白 叶绿体 拟南芥 生物 拟南芥 硫氧还蛋白还原酶 生物化学 光合作用 突变体 氧化还原 细胞生物学 化学 基因 有机化学
作者
Valle Ojeda,Juan Manuel Pérez-Ruiz,Maricruz González,Victoria Armario-Nájera,Mariam Sahrawy,Antonio Jesús Serrato,Peter Geigenberger,Francisco Javier Cejudo
出处
期刊:Plant Physiology [Oxford University Press]
卷期号:174 (3): 1436-1448 被引量:62
标识
DOI:10.1104/pp.17.00481
摘要

Thiol-dependent redox regulation of enzyme activity plays a central role in the rapid acclimation of chloroplast metabolism to ever-fluctuating light availability. This regulatory mechanism relies on ferredoxin reduced by the photosynthetic electron transport chain, which fuels reducing power to thioredoxins (Trxs) via a ferredoxin-dependent Trx reductase. In addition, chloroplasts harbor an NADPH-dependent Trx reductase, which has a joint Trx domain at the carboxyl terminus, termed NTRC. Thus, a relevant issue concerning chloroplast function is to establish the relationship between these two redox systems and its impact on plant development. To address this issue, we generated Arabidopsis (Arabidopsis thaliana) mutants combining the deficiency of NTRC with those of Trxs f, which participate in metabolic redox regulation, and that of Trx x, which has antioxidant function. The ntrc-trxf1f2 and, to a lower extent, ntrc-trxx mutants showed severe growth-retarded phenotypes, decreased photosynthesis performance, and almost abolished light-dependent reduction of fructose-1,6-bisphosphatase. Moreover, the combined deficiency of both redox systems provokes aberrant chloroplast ultrastructure. Remarkably, both the ntrc-trxf1f2 and ntrc-trxx mutants showed high mortality at the seedling stage, which was overcome by the addition of an exogenous carbon source. Based on these results, we propose that NTRC plays a pivotal role in chloroplast redox regulation, being necessary for the activity of diverse Trxs with unrelated functions. The interaction between the two thiol redox systems is indispensable to sustain photosynthesis performed by cotyledons chloroplasts, which is essential for early plant development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
望远山发布了新的文献求助10
1秒前
5秒前
王肖发布了新的文献求助10
5秒前
Guowei完成签到,获得积分10
8秒前
白露完成签到 ,获得积分10
8秒前
8秒前
fxx发布了新的文献求助10
9秒前
10秒前
13秒前
13秒前
GAO发布了新的文献求助10
15秒前
宋阳关注了科研通微信公众号
15秒前
MOON完成签到,获得积分10
16秒前
wenlin发布了新的文献求助10
17秒前
19秒前
23秒前
hb完成签到,获得积分10
23秒前
nhscyhy完成签到,获得积分10
24秒前
111发布了新的文献求助10
24秒前
Nitesith完成签到,获得积分10
27秒前
bkagyin应助活泼文涛采纳,获得10
27秒前
宋阳发布了新的文献求助10
28秒前
ephore应助syvshc采纳,获得50
32秒前
34秒前
杨欣悦发布了新的文献求助10
35秒前
39秒前
40秒前
x971017发布了新的文献求助10
41秒前
田様应助苗条中蓝采纳,获得10
41秒前
阳光的一应助江湖有九哥采纳,获得10
41秒前
要受到80斤完成签到,获得积分10
42秒前
Owen应助xmyyy采纳,获得10
44秒前
无聊的甜瓜完成签到,获得积分10
46秒前
石友瑶发布了新的文献求助10
46秒前
50秒前
烟花应助无私的八宝粥采纳,获得10
50秒前
50秒前
51秒前
aldehyde应助章鱼哥想毕业采纳,获得10
52秒前
xmyyy发布了新的文献求助10
54秒前
高分求助中
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Multi-omics analysis reveals the molecular mechanisms and therapeutic targets in high altitude polycythemia 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3899633
求助须知:如何正确求助?哪些是违规求助? 3444222
关于积分的说明 10833811
捐赠科研通 3169095
什么是DOI,文献DOI怎么找? 1750950
邀请新用户注册赠送积分活动 846407
科研通“疑难数据库(出版商)”最低求助积分说明 789179