生物
线粒体
氧化磷酸化
细胞生物学
串扰
表观遗传学
线粒体DNA
磷酸化
基因
遗传学
生物化学
物理
光学
作者
Aindrila Chatterjee,Janine Seyfferth,Jacopo Lucci,Ralf Gilsbach,Sebastian Preißl,Lena Böttinger,Christoph U. Mårtensson,Amol Panhale,Thomas Stehlé,Oliver Kretz,Abdullah H. Sahyoun,Sergiy Avilov,Stefan Eimer,Lutz Hein,Nikolaus Pfanner,Thomas Becker,Asifa Akhtar
出处
期刊:Cell
[Elsevier]
日期:2016-10-01
卷期号:167 (3): 722-738.e23
被引量:171
标识
DOI:10.1016/j.cell.2016.09.052
摘要
Summary
A functional crosstalk between epigenetic regulators and metabolic control could provide a mechanism to adapt cellular responses to environmental cues. We report that the well-known nuclear MYST family acetyl transferase MOF and a subset of its non-specific lethal complex partners reside in mitochondria. MOF regulates oxidative phosphorylation by controlling expression of respiratory genes from both nuclear and mtDNA in aerobically respiring cells. MOF binds mtDNA, and this binding is dependent on KANSL3. The mitochondrial pool of MOF, but not a catalytically deficient mutant, rescues respiratory and mtDNA transcriptional defects triggered by the absence of MOF. Mof conditional knockout has catastrophic consequences for tissues with high-energy consumption, triggering hypertrophic cardiomyopathy and cardiac failure in murine hearts; cardiomyocytes show severe mitochondrial degeneration and deregulation of mitochondrial nutrient metabolism and oxidative phosphorylation pathways. Thus, MOF is a dual-transcriptional regulator of nuclear and mitochondrial genomes connecting epigenetics and metabolism.
科研通智能强力驱动
Strongly Powered by AbleSci AI