Automatic Assessment of Functional Movement Screening Exercises with Deep Learning Architectures

计算机科学 超参数 功能性运动 人工智能 卷积神经网络 机器学习 深度学习 惯性测量装置 运动评估 运动(音乐) 人工神经网络 物理医学与康复 运动技能 医学 精神科 美学 哲学
作者
Andreas Spilz,Michael Münz
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:23 (1): 5-5 被引量:8
标识
DOI:10.3390/s23010005
摘要

(1) Background: The success of physiotherapy depends on the regular and correct unsupervised performance of movement exercises. A system that automatically evaluates these exercises could increase effectiveness and reduce risk of injury in home based therapy. Previous approaches in this area rarely rely on deep learning methods and do not yet fully use their potential. (2) Methods: Using a measurement system consisting of 17 inertial measurement units, a dataset of four Functional Movement Screening exercises is recorded. Exercise execution is evaluated by physiotherapists using the Functional Movement Screening criteria. This dataset is used to train a neural network that assigns the correct Functional Movement Screening score to an exercise repetition. We use an architecture consisting of convolutional, long-short-term memory and dense layers. Based on this framework, we apply various methods to optimize the performance of the network. For the optimization, we perform an extensive hyperparameter optimization. In addition, we are comparing different convolutional neural network structures that have been specifically adapted for use with inertial measurement data. To test the developed approach, it is trained on the data from different Functional Movement Screening exercises and the performance is compared on unknown data from known and unknown subjects. (3) Results: The evaluation shows that the presented approach is able to classify unknown repetitions correctly. However, the trained network is yet unable to achieve consistent performance on the data of previously unknown subjects. Additionally, it can be seen that the performance of the network differs depending on the exercise it is trained for. (4) Conclusions: The present work shows that the presented deep learning approach is capable of performing complex motion analytic tasks based on inertial measurement unit data. The observed performance degradation on the data of unknown subjects is comparable to publications of other research groups that relied on classical machine learning methods. However, the presented approach can rely on transfer learning methods, which allow to retrain the classifier by means of a few repetitions of an unknown subject. Transfer learning methods could also be used to compensate for performance differences between exercises.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郑嘻嘻完成签到,获得积分10
1秒前
机智寒珊发布了新的文献求助10
2秒前
一念初见发布了新的文献求助10
2秒前
彭于晏应助科研小达子采纳,获得10
2秒前
ice完成签到 ,获得积分10
3秒前
starlx0813完成签到 ,获得积分10
3秒前
昏睡的蟠桃应助筱潇采纳,获得30
3秒前
3秒前
义气小白菜完成签到 ,获得积分10
4秒前
green完成签到,获得积分10
5秒前
zhogwe发布了新的文献求助10
5秒前
荷包蛋完成签到,获得积分10
6秒前
MIST完成签到,获得积分10
6秒前
芋泥发布了新的文献求助10
6秒前
机械师简完成签到,获得积分20
6秒前
上官若男应助奮斗采纳,获得10
6秒前
顺利的曼寒完成签到 ,获得积分10
7秒前
8秒前
8秒前
8秒前
8秒前
z_zq完成签到,获得积分10
8秒前
8秒前
英姑应助堃kun采纳,获得10
8秒前
9秒前
wang1457完成签到,获得积分10
9秒前
9秒前
Eric完成签到,获得积分10
9秒前
生命科学的第一推动力完成签到 ,获得积分10
10秒前
乔治完成签到,获得积分10
10秒前
10秒前
王勾勾完成签到,获得积分10
11秒前
乐乐应助Danke采纳,获得10
11秒前
12秒前
开心烨磊发布了新的文献求助10
13秒前
木火发布了新的文献求助10
13秒前
14秒前
14秒前
华仔应助无与伦比采纳,获得10
14秒前
善学以致用应助开心妙之采纳,获得10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792936
求助须知:如何正确求助?哪些是违规求助? 3337536
关于积分的说明 10285691
捐赠科研通 3054189
什么是DOI,文献DOI怎么找? 1675858
邀请新用户注册赠送积分活动 803846
科研通“疑难数据库(出版商)”最低求助积分说明 761578