A transcriptome based approach to predict candidate drug targets and drugs for Parkinson's disease using an in vitro 6-OHDA model

转录组 帕金森病 药品 候选药物 计算生物学 体外 生物 药理学 疾病 基因 基因表达 医学 内科学 遗传学
作者
Esra Nur Yi̇ği̇t,Ekin Sönmez,İsa Yüksel,Işıl Aksan Kurnaz,Tunahan Çakır
出处
期刊:Molecular omics [Royal Society of Chemistry]
卷期号:19 (3): 218-228 被引量:4
标识
DOI:10.1039/d2mo00267a
摘要

The most common treatment strategies for Parkinson's disease (PD) aim to slow down the neurodegeneration process or control the symptoms. In this study, using an in vitro PD model we carried out a transcriptome-based drug target prediction strategy. We identified novel drug target candidates by mapping genes upregulated in 6-OHDA-treated cells on a human protein-protein interaction network. Among the predicted targets, we show that AKR1C3 and CEBPB are promising in validating our bioinformatics approach since their known ligands, rutin and quercetin, respectively, act as neuroprotective drugs that effectively decrease cell death, and restore the expression profiles of key genes upregulated in 6-OHDA-treated cells. We also show that these two genes upregulated in our in vitro PD model are downregulated to basal levels upon drug administration. As a further validation of our methodology, we further confirm that the potential target genes identified with our bioinformatics approach are also upregulated in post-mortem transcriptome samples of PD patients from the literature. Therefore, we propose that this methodology predicts novel drug targets AKR1C3 and CEBPB, which are relevant to future clinical applications as potential drug repurposing targets for PD. Our systems-based computational approach to predict candidate drug targets can be employed in identifying novel drug targets in other diseases without a priori assumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今天又来搬砖啦完成签到,获得积分10
1秒前
桐桐应助科研dog采纳,获得10
2秒前
搜集达人应助Zoe采纳,获得10
2秒前
天天快乐应助张江泽采纳,获得10
3秒前
刘振鲁完成签到,获得积分10
3秒前
liyiren完成签到,获得积分10
3秒前
怪僻完成签到,获得积分10
5秒前
123完成签到,获得积分10
5秒前
乌克丽丽完成签到 ,获得积分10
5秒前
熊熊面包完成签到,获得积分10
5秒前
6秒前
7秒前
852应助乐观小之采纳,获得10
8秒前
8秒前
10秒前
寒暄half发布了新的文献求助10
11秒前
11秒前
ruan发布了新的文献求助10
11秒前
11秒前
小小铱发布了新的文献求助10
12秒前
13秒前
14秒前
aaa完成签到,获得积分10
14秒前
木又权发布了新的文献求助10
16秒前
无误发布了新的文献求助10
17秒前
17秒前
李马克发布了新的文献求助10
17秒前
沐夏完成签到 ,获得积分10
19秒前
21秒前
21秒前
田一点发布了新的文献求助10
22秒前
无花果应助kavins凯旋采纳,获得10
24秒前
科研通AI5应助无误采纳,获得10
24秒前
汎影发布了新的文献求助10
25秒前
26秒前
vvA11应助淡然小懒猪采纳,获得10
26秒前
FAN发布了新的文献求助10
27秒前
30秒前
30秒前
Ww发布了新的文献求助10
30秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1200
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 860
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4195789
求助须知:如何正确求助?哪些是违规求助? 3731417
关于积分的说明 11752035
捐赠科研通 3406085
什么是DOI,文献DOI怎么找? 1868790
邀请新用户注册赠送积分活动 924975
科研通“疑难数据库(出版商)”最低求助积分说明 835577