亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Very short-term residential load forecasting based on deep-autoformer

计算机科学 人工智能 期限(时间) 技术预测 需求预测 环境科学 工程类 运筹学 量子力学 物理
作者
Yuqi Jiang,Tianlu Gao,Yuxin Dai,Ruiqi Si,Jun Hao,Jun Zhang,Wenzhong Gao
出处
期刊:Applied Energy [Elsevier]
卷期号:328: 120120-120120 被引量:64
标识
DOI:10.1016/j.apenergy.2022.120120
摘要

Very short-term load forecasting (VSLTF) plays an essential role in guaranteeing effective electricity dispatching and generating in residential microgrid systems. However, the extreme fluctuations and irregular data patterns of VSTLF have brought severe challenges to accurate forecasting. Deep learning methods have been mostly utilized in time series predicting tasks like load forecasting. Recently, an Autoformer neural network has been proposed in many time series forecasting scenarios. Based on Autoformer, this paper proposes a new Deep-Autoformer framework, where the extra MLP layers are added to the basic Autoformer framework for a more efficient deep information extraction. Taking a microgrid system in Austin, Texas from the Pecan Street dataset as a case study, Deep-Autoformer and other five baseline models are utilized to forecast the load data of 15 min and one-hour time resolution. The main contributions of the proposed Deep-Autoformer are: (i)the experiment results indicate that the proposed Deep-Autoformer has achieved State-Of-The-Art (SOTA) results in both VSTLF and STLF, and(ii) the ‘deep’ method, where the MLP layers are added in the appropriate positions of the neural network, can contribute to more efficient feature extraction. Moreover, due to the unintuitive phenomenons in the experiment, two hypotheses are also proposed: (i) the long-ago historical data may affect the performance of the auto-correlation mechanism of the Autoformer, and (ii) models are probably overfitting the historical patterns if the time series data are too long. Overall, the proposed Deep-Autoformer can provide a feasible approach and a new baseline for the real application of VSTLF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱妍发布了新的文献求助10
1秒前
6秒前
13秒前
爱妍完成签到,获得积分20
14秒前
彭于晏应助study采纳,获得10
16秒前
25秒前
study完成签到,获得积分10
27秒前
34秒前
可爱的函函应助study采纳,获得10
36秒前
48秒前
study发布了新的文献求助10
54秒前
59秒前
study发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
hehe完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
Huzhu应助科研通管家采纳,获得10
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
balko完成签到,获得积分10
2分钟前
2分钟前
2分钟前
完美世界应助阿巴采纳,获得10
3分钟前
3分钟前
3分钟前
香蕉觅云应助小兔子采纳,获得10
3分钟前
3分钟前
3分钟前
Huzhu应助科研通管家采纳,获得10
3分钟前
hanawang应助科研通管家采纳,获得10
3分钟前
小兔子发布了新的文献求助10
4分钟前
852应助烛夜黎采纳,获得10
4分钟前
Cherry完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488561
求助须知:如何正确求助?哪些是违规求助? 4587391
关于积分的说明 14413838
捐赠科研通 4518759
什么是DOI,文献DOI怎么找? 2476074
邀请新用户注册赠送积分活动 1461541
关于科研通互助平台的介绍 1434505