Membrane-tension-dominated growth mechanism and size modulation of giant unilamellar vesicles in electroformation

小泡 材料科学 电极 纳米技术 联轴节(管道) 化学 复合材料 生物化学 物理化学
作者
Z. Liang,Miao Chen,Xiaosu Yi,Wanpeng Zhu
出处
期刊:Journal of The Mechanics and Physics of Solids [Elsevier]
卷期号:170: 105120-105120
标识
DOI:10.1016/j.jmps.2022.105120
摘要

Giant unilamellar vesicles (GUVs) are excellent membrane model systems and nano-carriers for biophysical studies and biomedical applications. Electroformation is one of the most prevalent methods for GUV production, during which defect-free vesicles with high unilamellarity grow from lipid films under an electric field between electrodes. To overcome the weak controllability of electroformation and meet the requirement of grown GUVs with specific size, constructing electrode microstructures has been recently introduced in synthesis of size-controllable GUVs. However, the introduction of electrode microstructures is limited, as the strong adhesion at edges or corners of microstructures leads to difficult detachments of transferable GUVs from the electrodes. Moreover, the mechanism of GUV growth is ambiguous, and the size modulation of detachable GUVs is still a key challenge. Herein, we first performed theoretical modeling to reveal the growth mechanism of GUVs in electroformation, and we found that the membrane tension inhibits the growth of GUVs and leads to the coupling between vesicles that causes the growth instability as GUVs exceed certain critical sizes. Introducing the free boundaries on lipid films that can reduce the membrane tension and the coupling between vesicles, we experimentally obtained amounts of detachable GUVs of remarkable size uniformity. Eventually, we achieved the size modulation of detachable GUVs by constructing the island-like lipid patches on electrodes. Our work offers nanomechanical understandings of the GUV growth and paves the way for the preparation of detachable GUVs with controllable sizes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
苗子应助七盘西采纳,获得10
1秒前
hxhw完成签到 ,获得积分10
2秒前
Triple_tian发布了新的文献求助30
2秒前
michaelzy发布了新的文献求助100
3秒前
momo123完成签到 ,获得积分10
4秒前
好事发生完成签到,获得积分10
4秒前
顾秋寒完成签到,获得积分10
5秒前
clineli完成签到,获得积分10
6秒前
怡然谷雪发布了新的文献求助10
6秒前
鳗鱼嫣然完成签到,获得积分10
6秒前
CodeCraft应助wys采纳,获得10
6秒前
不讲道梨完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
舒心乘风完成签到,获得积分10
8秒前
刚刚好完成签到,获得积分10
9秒前
专注科研完成签到,获得积分10
9秒前
9秒前
NexusExplorer应助miao采纳,获得10
10秒前
michaelzy完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
11秒前
优雅战斗机完成签到,获得积分10
11秒前
11秒前
111关闭了111文献求助
12秒前
ALIVE_STAR发布了新的文献求助20
12秒前
13秒前
13秒前
14秒前
个性的紫菜应助张光光采纳,获得20
16秒前
yang发布了新的文献求助10
16秒前
16秒前
16秒前
FashionBoy应助明理的雁凡采纳,获得10
17秒前
yzx完成签到,获得积分10
18秒前
wys发布了新的文献求助10
18秒前
高分求助中
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
[Lambert-Eaton syndrome without calcium channel autoantibodies] 520
The three stars each: the Astrolabes and related texts 500
Revolutions 400
Diffusion in Solids: Key Topics in Materials Science and Engineering 400
Phase Diagrams: Key Topics in Materials Science and Engineering 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2451990
求助须知:如何正确求助?哪些是违规求助? 2124780
关于积分的说明 5407909
捐赠科研通 1853524
什么是DOI,文献DOI怎么找? 921799
版权声明 562273
科研通“疑难数据库(出版商)”最低求助积分说明 493140