Characterizing functional brain networks via Spatio-Temporal Attention 4D Convolutional Neural Networks (STA-4DCNNs)

人类连接体项目 功能磁共振成像 计算机科学 人工智能 静息状态功能磁共振成像 模式识别(心理学) 连接体 概化理论 卷积神经网络 大脑活动与冥想 功能连接 神经科学 心理学 发展心理学 脑电图
作者
Xi Jiang,Jiadong Yan,Yu Zhao,Mingxin Jiang,Yuzhong Chen,Jingchao Zhou,Zhenxiang Xiao,Zifan Wang,Rong Zhang,Benjamin Becker,Dajiang Zhu,Keith M. Kendrick,Tianming Liu
出处
期刊:Neural Networks [Elsevier BV]
卷期号:158: 99-110 被引量:22
标识
DOI:10.1016/j.neunet.2022.11.004
摘要

Characterizing individualized spatio-temporal patterns of functional brain networks (FBNs) via functional magnetic resonance imaging (fMRI) provides a foundation for understanding complex brain function. Although previous studies have achieved promising performances based on either shallow or deep learning models, there is still much space to improve the accuracy of spatio-temporal pattern characterization of FBNs by optimally integrating the four-dimensional (4D) features of fMRI. In this study, we introduce a novel Spatio-Temporal Attention 4D Convolutional Neural Network (STA-4DCNN) model to characterize individualized spatio-temporal patterns of FBNs. Particularly, STA-4DCNN is composed of two subnetworks, in which the first Spatial Attention 4D CNN (SA-4DCNN) models the spatio-temporal features of 4D fMRI data and then characterizes the spatial pattern of FBNs, and the second Temporal Guided Attention Network (T-GANet) further characterizes the temporal pattern of FBNs under the guidance of the spatial pattern together with 4D fMRI data. We evaluate the proposed STA-4DCNN on seven different task fMRI and one resting state fMRI datasets from the publicly released Human Connectome Project. The experimental results demonstrate that STA-4DCNN has superior ability and generalizability in characterizing individualized spatio-temporal patterns of FBNs when compared to other state-of-the-art models. We further apply STA-4DCNN on another independent ABIDE I resting state fMRI dataset including both autism spectrum disorder (ASD) and typical developing (TD) subjects, and successfully identify abnormal spatio-temporal patterns of FBNs in ASD compared to TD. In general, STA-4DCNN provides a powerful tool for FBN characterization and for clinical applications on brain disease characterization at the individual level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳佟万言完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
3秒前
4秒前
纯真晓灵发布了新的文献求助10
5秒前
科目三应助kun采纳,获得10
6秒前
hehehe发布了新的文献求助10
6秒前
Tomi发布了新的文献求助20
6秒前
木木发布了新的文献求助10
7秒前
7秒前
7秒前
9秒前
9秒前
Bonnienuit发布了新的文献求助10
10秒前
10秒前
共情发布了新的文献求助10
12秒前
小马甲应助陈昭琼采纳,获得10
14秒前
daodemoli发布了新的文献求助10
14秒前
WSH发布了新的文献求助10
15秒前
纯真晓灵完成签到,获得积分10
15秒前
zg完成签到,获得积分10
16秒前
Cloud发布了新的文献求助10
16秒前
华仔应助nocap666采纳,获得10
16秒前
16秒前
万能图书馆应助苏州小北采纳,获得10
16秒前
18秒前
18秒前
18秒前
19秒前
CR7应助Tomi采纳,获得20
20秒前
任伟超发布了新的文献求助10
20秒前
笨笨发布了新的文献求助10
21秒前
喔喔喔哦wo完成签到,获得积分10
21秒前
21秒前
21秒前
Wyj应助味子橘采纳,获得10
22秒前
23秒前
zhuang发布了新的文献求助10
23秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
求 5G-Advanced NTN空天地一体化技术 pdf版 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4066053
求助须知:如何正确求助?哪些是违规求助? 3604736
关于积分的说明 11448246
捐赠科研通 3327101
什么是DOI,文献DOI怎么找? 1829030
邀请新用户注册赠送积分活动 899118
科研通“疑难数据库(出版商)”最低求助积分说明 819449