Spatially aware graph neural networks and cross-level molecular profile prediction in colon cancer histopathology: a retrospective multi-cohort study

腺癌 结直肠癌 微卫星不稳定性 可解释性 生物 背景(考古学) 计算生物学 肿瘤科 癌症研究 基因 生物信息学 计算机科学 癌症 医学 遗传学 人工智能 微卫星 古生物学 等位基因
作者
Kexin Ding,Mu Zhou,He Wang,Shaoting Zhang,Dimitri Metaxas
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:4 (11): e787-e795 被引量:28
标识
DOI:10.1016/s2589-7500(22)00168-6
摘要

Digital whole-slide images are a unique way to assess the spatial context of the cancer microenvironment. Exploring these spatial characteristics will enable us to better identify cross-level molecular markers that could deepen our understanding of cancer biology and related patient outcomes.We proposed a graph neural network approach that emphasises spatialisation of tumour tiles towards a comprehensive evaluation of predicting cross-level molecular profiles of genetic mutations, copy number alterations, and functional protein expressions from whole-slide images. We introduced a transformation strategy that converts whole-slide image scans into graph-structured data to address the spatial heterogeneity of colon cancer. We developed and assessed the performance of the model on The Cancer Genome Atlas colon adenocarcinoma (TCGA-COAD) and validated it on two external datasets (ie, The Cancer Genome Atlas rectum adenocarcinoma [TCGA-READ] and Clinical Proteomic Tumor Analysis Consortium colon adenocarcinoma [CPTAC-COAD]). We also predicted microsatellite instability and result interpretability.The model was developed on 459 colon tumour whole-slide images from TCGA-COAD, and externally validated on 165 rectum tumour whole-slide images from TCGA-READ and 161 colon tumour whole-slide images from CPTAC-COAD. For TCGA cohorts, our method accurately predicted the molecular classes of the gene mutations (area under the curve [AUCs] from 82·54 [95% CI 77·41-87·14] to 87·08 [83·28-90·82] on TCGA-COAD, and AUCs from 70·46 [61·37-79·61] to 81·80 [72·20-89·70] on TCGA-READ), along with genes with copy number alterations (AUCs from 81·98 [73·34-89·68] to 90·55 [86·02-94·89] on TCGA-COAD, and AUCs from 62·05 [48·94-73·46] to 76·48 [64·78-86·71] on TCGA-READ), microsatellite instability (MSI) status classification (AUC 83·92 [77·41-87·59] on TCGA-COAD, and AUC 61·28 [53·28-67·93] on TCGA-READ), and protein expressions (AUCs from 85·57 [81·16-89·44] to 89·64 [86·29-93·19] on TCGA-COAD, and AUCs from 51·77 [42·53-61·83] to 59·79 [50·79-68·57] on TCGA-READ). For the CPTAC-COAD cohort, our model predicted a panel of gene mutations with AUC values from 63·74 (95% CI 52·92-75·37) to 82·90 (73·69-90·71), genes with copy number alterations with AUC values from 62·39 (51·37-73·76) to 86·08 (79·67-91·74), and MSI status prediction with AUC value of 73·15 (63·21-83·13).We showed that spatially connected graph models enable molecular profile predictions in colon cancer and are generalised to rectum cancer. After further validation, our method could be used to infer the prognostic value of multiscale molecular biomarkers and identify targeted therapies for patients with colon cancer.This research has been partially funded by ARO MURI 805491, NSF IIS-1793883, NSF CNS-1747778, NSF IIS 1763523, DOD-ARO ACC-W911NF, and NSF OIA-2040638 to Dimitri N Metaxas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小豆完成签到,获得积分10
1秒前
李健应助房产中介采纳,获得10
2秒前
苍苍完成签到,获得积分10
2秒前
sunshine完成签到,获得积分10
3秒前
hony完成签到,获得积分10
4秒前
4秒前
摸鱼仙人完成签到,获得积分10
5秒前
今后应助带象采纳,获得10
5秒前
合适忆南完成签到,获得积分10
7秒前
一亩蔬菜完成签到,获得积分10
7秒前
7秒前
一帆风顺发布了新的文献求助30
8秒前
陈昭琼发布了新的文献求助10
10秒前
10秒前
11秒前
ash7856发布了新的文献求助10
11秒前
13秒前
你可真下饭完成签到 ,获得积分10
13秒前
彭于晏应助科研通管家采纳,获得30
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
HEIKU应助科研通管家采纳,获得10
13秒前
hanzhipad应助科研通管家采纳,获得10
13秒前
hanzhipad应助科研通管家采纳,获得10
13秒前
hanzhipad应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
Ava应助科研通管家采纳,获得10
13秒前
SciGPT应助科研通管家采纳,获得10
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
在水一方应助科研通管家采纳,获得10
14秒前
情怀应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
HEIKU应助科研通管家采纳,获得10
14秒前
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
14秒前
科研助手6应助科研通管家采纳,获得10
14秒前
干净思远完成签到,获得积分10
14秒前
coolkid应助科研通管家采纳,获得20
14秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845856
求助须知:如何正确求助?哪些是违规求助? 3388210
关于积分的说明 10552030
捐赠科研通 3108791
什么是DOI,文献DOI怎么找? 1713127
邀请新用户注册赠送积分活动 824593
科研通“疑难数据库(出版商)”最低求助积分说明 774927