SwinPA-Net: Swin Transformer-Based Multiscale Feature Pyramid Aggregation Network for Medical Image Segmentation

计算机科学 分割 人工智能 模式识别(心理学) 棱锥(几何) 特征(语言学) 图像分割 尺度空间分割 水准点(测量) 计算机视觉 数学 语言学 哲学 几何学 大地测量学 地理
作者
Hao Du,Jiazheng Wang,Min Liu,Yaonan Wang,Erik Meijering
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (4): 5355-5366 被引量:53
标识
DOI:10.1109/tnnls.2022.3204090
摘要

The precise segmentation of medical images is one of the key challenges in pathology research and clinical practice. However, many medical image segmentation tasks have problems such as large differences between different types of lesions and similar shapes as well as colors between lesions and surrounding tissues, which seriously affects the improvement of segmentation accuracy. In this article, a novel method called Swin Pyramid Aggregation network (SwinPA-Net) is proposed by combining two designed modules with Swin Transformer to learn more powerful and robust features. The two modules, named dense multiplicative connection (DMC) module and local pyramid attention (LPA) module, are proposed to aggregate the multiscale context information of medical images. The DMC module cascades the multiscale semantic feature information through dense multiplicative feature fusion, which minimizes the interference of shallow background noise to improve the feature expression and solves the problem of excessive variation in lesion size and type. Moreover, the LPA module guides the network to focus on the region of interest by merging the global attention and the local attention, which helps to solve similar problems. The proposed network is evaluated on two public benchmark datasets for polyp segmentation task and skin lesion segmentation task as well as a clinical private dataset for laparoscopic image segmentation task. Compared with existing state-of-the-art (SOTA) methods, the SwinPA-Net achieves the most advanced performance and can outperform the second-best method on the mean Dice score by 1.68%, 0.8%, and 1.2% on the three tasks, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忐忑的康完成签到 ,获得积分10
1秒前
2秒前
木云浅夏发布了新的文献求助10
4秒前
LANER完成签到,获得积分10
4秒前
烟花应助TT2022采纳,获得10
6秒前
Doctor甜发布了新的文献求助10
7秒前
希望天下0贩的0应助yue采纳,获得10
8秒前
彭于晏应助snowskating采纳,获得10
10秒前
12秒前
搜集达人应助俭朴夜香采纳,获得10
15秒前
善良的剑通应助多情老三采纳,获得10
16秒前
LANER发布了新的文献求助10
16秒前
科研通AI5应助大豆cong采纳,获得30
17秒前
17秒前
20秒前
思源应助爱科研的豆芽采纳,获得10
21秒前
snowskating发布了新的文献求助10
22秒前
24秒前
xiao金发布了新的文献求助10
25秒前
爱科研的豆芽完成签到,获得积分10
26秒前
28秒前
yangyog发布了新的文献求助10
28秒前
脸小呆呆发布了新的文献求助10
29秒前
33秒前
myl发布了新的文献求助10
34秒前
35秒前
淡然的蚂蚁完成签到,获得积分10
38秒前
眼睛大的胡萝卜完成签到 ,获得积分10
39秒前
酷波er应助杨震采纳,获得30
41秒前
稳稳完成签到,获得积分10
42秒前
zsyf完成签到,获得积分10
43秒前
科研通AI5应助淡然的蚂蚁采纳,获得10
43秒前
wwho_O完成签到 ,获得积分10
43秒前
46秒前
51秒前
赵欢欢发布了新的文献求助30
52秒前
54秒前
超级的妙晴完成签到 ,获得积分10
58秒前
汉堡包应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780364
求助须知:如何正确求助?哪些是违规求助? 3325704
关于积分的说明 10224008
捐赠科研通 3040823
什么是DOI,文献DOI怎么找? 1669040
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758648