Application of deep-learning based techniques for automatic metrology on scanning and transmission electron microscopy images

计量学 计算机科学 人工智能 深度学习 分割 机器学习 目标检测 计算机视觉 模式识别(心理学) 光学 物理
作者
Julien Baderot,Marion Grould,Diganta Misra,Clément Nicolas,Ali Hallal,Sergio Martinez,J. Foucher
出处
期刊:Journal of vacuum science and technology [American Vacuum Society]
卷期号:40 (5) 被引量:5
标识
DOI:10.1116/6.0001988
摘要

Scanning or transmission electron microscopy (SEM/TEM) are standard techniques used during Research and Development (R&D) phases to study the structure and morphology of microscopic materials. Variety in object shapes and sizes are observed in such images to ensure robust micro- and nanomaterials critical dimension analysis. This way, precision and accuracy can be guaranteed during materials manufacturing processes. Such diversity and complexity in the data make it challenging to automatically extract the desired measurements of these microscopic structures. Existing tools in metrology often require many manual interactions, therefore being slow and prone to user errors. Proposed semiautomatic and automatic tools in the state-of-the-art are also limited and not designed to handle large variations across the images. Thus, the application of advanced machine or deep learning techniques could bring great efficiency in SEM/TEM image analysis and measurements for microscopic scale R&D processes. In this paper, we demonstrate the feasibility of deep-learning based object detection and instance segmentation models to perform automatic and accurate metrology on microscopic images with high object variability. We also show that custom object detection models prepared using pretrained weights, finetuned on very limited custom data, can outperform detection models built using traditional methods. This is particularly useful in metrology for the semiconductor industry, where data scarcity is common. When the data are available, we observe that it can be useful to be able to generate a large number of quality annotations to use instance segmentation. This could allow the training of more complex deep learning models for particle recognition and analysis. Therefore, we propose a semiautomatic tool to help produce annotations and demonstrate its application in an instance segmentation task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助勤恳缘分采纳,获得10
刚刚
MHX完成签到,获得积分10
刚刚
共享精神应助wcy采纳,获得10
刚刚
科研通AI5应助沉静的时光采纳,获得10
刚刚
哈哈发布了新的文献求助10
1秒前
Hello应助彩色镜子采纳,获得10
1秒前
852应助wo采纳,获得10
2秒前
科研通AI5应助眼睛大半烟采纳,获得10
2秒前
天炎磊磊完成签到,获得积分10
3秒前
zmj发布了新的文献求助10
4秒前
4秒前
Awen发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
汪汪发布了新的文献求助10
5秒前
6秒前
GodLoveEdison完成签到,获得积分10
6秒前
kgrvlm发布了新的文献求助10
6秒前
6秒前
7秒前
iNk应助ly采纳,获得20
7秒前
CodeCraft应助汤圆采纳,获得10
7秒前
7秒前
顺风顺水的薇容完成签到 ,获得积分10
8秒前
8秒前
科研通AI5应助昌莆采纳,获得10
8秒前
summer应助清修采纳,获得10
8秒前
无奈的石头完成签到,获得积分20
8秒前
NexusExplorer应助谨慎储采纳,获得10
8秒前
共享精神应助引子采纳,获得10
8秒前
9秒前
Harbor完成签到,获得积分10
9秒前
322小弟完成签到,获得积分10
9秒前
9秒前
飞蝴蝶完成签到,获得积分10
9秒前
淡淡的水香完成签到,获得积分10
9秒前
10秒前
NexusExplorer应助顺利寄文采纳,获得10
10秒前
XD824发布了新的文献求助10
10秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806041
求助须知:如何正确求助?哪些是违规求助? 3350870
关于积分的说明 10351903
捐赠科研通 3066760
什么是DOI,文献DOI怎么找? 1684143
邀请新用户注册赠送积分活动 809333
科研通“疑难数据库(出版商)”最低求助积分说明 765463