CellCircLoc: Deep Neural Network for Predicting and Explaining Cell Line-Specific CircRNA Subcellular Localization

人工智能 计算机科学 人工神经网络 直线(几何图形) 模式识别(心理学) 数学 几何学
作者
Min Zeng,Jingwei Lu,Yiming Li,Chengqian Lu,Shichao Kan,Fei Guo,Min Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:29 (2): 1494-1503 被引量:1
标识
DOI:10.1109/jbhi.2024.3491732
摘要

The subcellular localization of circular RNAs (circRNAs) is crucial for understanding their functional relevance and regulatory mechanisms. CircRNA subcellular localization exhibits variations across different cell lines, demonstrating the diversity and complexity of circRNA regulation within distinct cellular contexts. However, existing computational methods for predicting circRNA subcellular localization often ignore the importance of cell line specificity and instead train a general model on aggregated data from all cell lines. Considering the diversity and context-dependent behavior of circRNAs across different cell lines, it is imperative to develop cell line-specific models to accurately predict circRNA subcellular localization. In the study, we proposed CellCircLoc, a sequence-based deep learning model for circRNA subcellular localization prediction, which is trained for different cell lines. CellCircLoc utilizes a combination of convolutional neural networks, Transformer blocks, and bidirectional long short-term memory to capture both sequence local features and long-range dependencies within the sequences. In the Transformer blocks, CellCircLoc uses an attentive convolution mechanism to capture the importance of individual nucleotides. Extensive experiments demonstrate the effectiveness of CellCircLoc in accurately predicting circRNA subcellular localization across different cell lines, outperforming other computational models that do not consider cell line specificity. Moreover, the interpretability of CellCircLoc facilitates the discovery of important motifs associated with circRNA subcellular localization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cqnuly发布了新的文献求助10
1秒前
1秒前
ljm完成签到,获得积分10
2秒前
Jasper应助wll采纳,获得30
2秒前
3秒前
4秒前
夜行发布了新的文献求助10
4秒前
5秒前
彭薇颖发布了新的文献求助10
5秒前
5秒前
科研通AI6应助科研牛马采纳,获得10
6秒前
研晓晓完成签到,获得积分10
6秒前
鲜于冰彤完成签到,获得积分10
6秒前
我是老大应助科研通管家采纳,获得30
10秒前
大个应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
11秒前
2377135777关注了科研通微信公众号
11秒前
李健应助科研通管家采纳,获得10
11秒前
Criminology34应助科研通管家采纳,获得10
11秒前
思源应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
12秒前
Criminology34应助科研通管家采纳,获得10
12秒前
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
12秒前
13秒前
15秒前
NicotineZen发布了新的文献求助10
15秒前
15秒前
暮光之城发布了新的文献求助10
16秒前
6666应助勤劳莹芝采纳,获得10
17秒前
黍姐想你了完成签到,获得积分10
17秒前
117完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5312188
求助须知:如何正确求助?哪些是违规求助? 4455976
关于积分的说明 13864983
捐赠科研通 4344392
什么是DOI,文献DOI怎么找? 2385837
邀请新用户注册赠送积分活动 1380209
关于科研通互助平台的介绍 1348565