Multivariate sensing of ions using machine learning and composite 2D-3D graphene oxide-hexacyanoferrate electrodes

石墨烯 电极 多元统计 氧化物 复合数 离子 材料科学 化学工程 纳米技术 计算机科学 复合材料 机器学习 化学 冶金 物理化学 工程类 有机化学
作者
Laura Malavolta,ilenia bracaglia,giulia cazzador,Alessandro Kovtun,Lorenzo Tomasi,Chiara Zanardi,Vincenzo Palermo
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:427: 137194-137194 被引量:2
标识
DOI:10.1016/j.snb.2024.137194
摘要

The conventional method for sensing relies on the development of highly selective materials capable of detecting specific target molecules or ions without interference from other species commonly found in real solutions. However, creating practical sensors that can effectively discriminate between analytes sharing similar chemistry presents significant challenges. To address this issue, we describe a novel approach utilizing an ensemble of four diverse amperometric sensors obtained for deposition of 2-dimensional graphene oxide nanosheets (GO) and 3-dimensional metal-organic frameworks (MOFs) based on redox active metal hexacyanoferrates. The multivariate signals obtained by the sensor array is used to train an artificial neural network (ANN) capable of analysing such complex inputs to accurately determine the concentrations of Na+ and K+ ions in solutions with varying ionic strengths. The sensing strategy is based on the differential intercalation and diffusion behaviour of Na+ and K+ ions within both GO and MOFs, resulting in distinct voltammetric signals. The neural network is trained using massive datasets comprising 327 variables as columns and over 4 million samples as rows. Following training, the sensor array demonstrates remarkable proficiency in accurately measuring the concentration of both ions present in solution, while a single sensor cannot discern between the signals generated by each ion. This ongoing work underscores the potential of integrating artificial intelligence with tunable materials to develop a new class of chemical sensors with enhanced discrimination capabilities, paving the way for more robust and versatile sensor technologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
森林发布了新的文献求助10
刚刚
王纯妍发布了新的文献求助10
刚刚
123456发布了新的文献求助10
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
宋煜欧完成签到,获得积分10
5秒前
淡定的水彤完成签到,获得积分10
5秒前
传奇3应助123456采纳,获得10
7秒前
852应助王博涵采纳,获得10
10秒前
zllllll完成签到 ,获得积分10
11秒前
852应助夏天采纳,获得10
11秒前
SD完成签到,获得积分10
12秒前
2620完成签到,获得积分10
12秒前
研友_VZG7GZ应助lin采纳,获得10
12秒前
12秒前
老八完成签到,获得积分10
13秒前
14秒前
15秒前
zkyyinf_zero完成签到,获得积分10
15秒前
完美世界应助小李采纳,获得10
16秒前
waver发布了新的文献求助10
16秒前
17秒前
那迪娅完成签到,获得积分20
18秒前
19秒前
19秒前
20秒前
20秒前
王博涵发布了新的文献求助10
21秒前
22秒前
六一完成签到,获得积分20
22秒前
kris完成签到,获得积分10
22秒前
22秒前
22秒前
木子李发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
23秒前
彭于晏应助忧郁难胜采纳,获得10
23秒前
小小白发布了新的文献求助10
24秒前
俊逸战斗机完成签到,获得积分10
25秒前
frozensun发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533159
求助须知:如何正确求助?哪些是违规求助? 4621584
关于积分的说明 14579174
捐赠科研通 4561639
什么是DOI,文献DOI怎么找? 2499444
邀请新用户注册赠送积分活动 1479295
关于科研通互助平台的介绍 1450504