Noninvasive Oral Hyperspectral Imaging–Driven Digital Diagnosis of Heart Failure With Preserved Ejection Fraction: Model Development and Validation Study

高光谱成像 医学 人工智能 预处理器 射血分数 机器学习 计算机科学 内科学 心力衰竭
作者
Xiaomeng Yang,Zeyan Li,Lei Lei,Xiaoyu Shi,Dingming Zhang,Fei Zhou,Wenjing Li,Tianyou Xu,Xinyu Liu,Songyun Wang,Quan Yuan,Jian Yang,Xinyu Wang,Yanfei Zhong,Lilei Yu
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:27: e67256-e67256 被引量:1
标识
DOI:10.2196/67256
摘要

Background Oral microenvironmental disorders are associated with an increased risk of heart failure with preserved ejection fraction (HFpEF). Hyperspectral imaging (HSI) technology enables the detection of substances that are visually indistinguishable to the human eye, providing a noninvasive approach with extensive applications in medical diagnostics. Objective The objective of this study is to develop and validate a digital, noninvasive oral diagnostic model for patients with HFpEF using HSI combined with various machine learning algorithms. Methods Between April 2023 and August 2023, a total of 140 patients were recruited from Renmin Hospital of Wuhan University to serve as the training and internal testing groups for this study. Subsequently, from August 2024 to September 2024, an additional 35 patients were enrolled from Three Gorges University and Yichang Central People’s Hospital to constitute the external testing group. After preprocessing to ensure image quality, spectral and textural features were extracted from the images. We extracted 25 spectral bands from each patient image and obtained 8 corresponding texture features to evaluate the performance of 28 machine learning algorithms for their ability to distinguish control participants from participants with HFpEF. The model demonstrating the optimal performance in both internal and external testing groups was selected to construct the HFpEF diagnostic model. Hyperspectral bands significant for identifying participants with HFpEF were identified for further interpretative analysis. The Shapley Additive Explanations (SHAP) model was used to provide analytical insights into feature importance. Results Participants were divided into a training group (n=105), internal testing group (n=35), and external testing group (n=35), with consistent baseline characteristics across groups. Among the 28 algorithms tested, the random forest algorithm demonstrated superior performance with an area under the receiver operating characteristic curve (AUC) of 0.884 and an accuracy of 82.9% in the internal testing group, as well as an AUC of 0.812 and an accuracy of 85.7% in the external testing group. For model interpretation, we used the top 25 features identified by the random forest algorithm. The SHAP analysis revealed discernible distinctions between control participants and participants with HFpEF, thereby validating the diagnostic model’s capacity to accurately identify participants with HFpEF. Conclusions This noninvasive and efficient model facilitates the identification of individuals with HFpEF, thereby promoting early detection, diagnosis, and treatment. Our research presents a clinically advanced diagnostic framework for HFpEF, validated using independent data sets and demonstrating significant potential to enhance patient care. Trial Registration China Clinical Trial Registry ChiCTR2300078855; https://www.chictr.org.cn/showproj.html?proj=207133

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星空之下ssr完成签到,获得积分10
刚刚
科研通AI6应助Timo采纳,获得10
1秒前
芯止谭轩完成签到,获得积分10
2秒前
RR发布了新的文献求助10
2秒前
2秒前
苏七完成签到,获得积分10
2秒前
3秒前
3秒前
fan发布了新的文献求助10
4秒前
Hello应助壮壮采纳,获得10
5秒前
Yuanzhi发布了新的文献求助30
5秒前
李园园完成签到 ,获得积分10
5秒前
6秒前
7秒前
Akim应助柳霖鸢采纳,获得10
8秒前
粱如波发布了新的文献求助10
8秒前
张大宝发布了新的文献求助10
10秒前
Akim应助zmx1025采纳,获得200
11秒前
weijiechi发布了新的文献求助10
11秒前
亲亲发布了新的文献求助10
11秒前
大个应助He5ro采纳,获得10
13秒前
14秒前
Shohan完成签到 ,获得积分10
15秒前
16秒前
tyx完成签到,获得积分20
16秒前
16秒前
喵拟吗喵发布了新的文献求助10
17秒前
19秒前
weijiechi完成签到,获得积分10
19秒前
Banana发布了新的文献求助10
19秒前
19秒前
Aniya_Shine完成签到 ,获得积分10
20秒前
粱如波完成签到,获得积分20
20秒前
cz发布了新的文献求助10
20秒前
张大宝完成签到,获得积分10
20秒前
21秒前
忧郁哈密瓜完成签到,获得积分20
21秒前
星辰完成签到 ,获得积分10
22秒前
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5258607
求助须知:如何正确求助?哪些是违规求助? 4420536
关于积分的说明 13760609
捐赠科研通 4294224
什么是DOI,文献DOI怎么找? 2356308
邀请新用户注册赠送积分活动 1352632
关于科研通互助平台的介绍 1313481