硫转移酶
缺血
认知障碍
神经科学
磷酸酶
医学
认知
化学
生物化学
心理学
心脏病学
酶
半胱氨酸
作者
Li Zhu,Yi Huang,Jing Jin,Rongjun Zou,Rui Zuo,Yong Luo,Ziqing Song,Linfeng Dai,Minyi Zhang,Qiuhe Chen,Yunting Wang,Wei Wang,Rongrong He,Yang Chen
标识
DOI:10.1016/j.apsb.2024.11.015
摘要
The catalytic activity of 3-mercaptopyruvate (3MP) sulfurtransferase (MPST) converts 3MP to hydrogen sulfide (H2S). However, the regulatory mechanisms governing MPST and its impact on the brain remain largely unexplored. Our study reveals the neuroprotective role of endothelial MPST-generated H2S, regulated by protein phosphatase 2A (PP2A). Bioinformatics analysis and RNA sequencing demonstrated that endothelial PP2A is associated with neurodegenerative disease pathways. Cerebral ischemic mice exhibited significant inactivation of endothelial PP2A, evidenced by the reduction of PP2Acα in the brain endothelium. Mice with endothelium-specific null PP2A (PP2AEC-cKO) exhibited neuronal loss, cognitive dysfunction, and long-term potentiation deficits. Postnatal inactivation of endothelial PP2A also contributes to cognitive dysfunction and neuronal loss. However, regaining endothelial PP2A activity by overexpressing Ppp2ca rescued neuronal dysfunction. Mechanistically, PP2A deficiency is intricately linked to the MPST-H2S signaling pathway. A robust reduction in endothelial MPST-dependent H2S production followed PP2A deficiency. Exogenous H2S treatment and AAV-mediated overexpression of MPST in brain endothelial cells significantly mitigated neuronal dysfunction in PP2AEC-cKO mice. Furthermore, PP2A deficiency promotes an increase in calcium influx and calpain2 phosphorylation, subsequently leading to MPST degradation. The PP2A activator (FTY720) and MPST activator (3MP sodium) both remarkably restored endothelial MPST-dependent H2S production, subsequently rescuing ischemia-induced neurological deficits. In conclusion, our study demonstrates that endothelial PP2A deficiency leads to MPST degradation by activating calpain2, thus damaging neuronal function.
科研通智能强力驱动
Strongly Powered by AbleSci AI