挠曲电
极地的
铁电性
材料科学
压电响应力显微镜
极化(电化学)
化学物理
凝聚态物理
压电
纳米技术
光电子学
复合材料
电介质
化学
物理
物理化学
天文
作者
Hongxing Shang,Sheng Tang,Huiting Dong,Yihan Wu,Qianqian Ma,Xin Zhang,Lingtong Lv,Hongyu Cao,Feng Deng,Liang Xu,Shuling Hu,Shengping Shen
标识
DOI:10.1073/pnas.2414500121
摘要
Ordered polar structures in oxide nanofilms play a pivotal role in the development of nanoelectronic applications. Hitherto, ordered polar structures have been restricted to a limited number of ferroelectric materials, and there is no effective scheme to induce and manipulate ordered polar patterns in centrosymmetric nonpolar nanofilms due to the absence of spontaneous symmetry breaking. Here, we circumvent these limitations by utilizing the wrinkle-induced strain gradient modulation associated with flexoelectricity as a general means of inducing and manipulating ordered polar patterns in nonpolar nanofilms. Leveraging the surface instability caused by strain mismatch between oxide nanofilms and pre-strained compliant substrate, we successfully fabricate striped SrTiO 3 wrinkles, where well-ordered strain gradients and corresponding periodic polar patterns are readily achieved. Through in-situ piezoresponse force microscopy experiments, we show that the generated polar patterns can be manipulated by varying strain boundaries. Furthermore, the atomistic resolution images and first-principles calculations reveal that such wrinkle-induced ordered polar patterns primarily emerge from the flexoelectric coupling between the local polarization and strain gradients. These findings provide implications for manipulating polar structures by strain gradient and flexoelectric engineering, which in turn enable the realization of nontrivial polar structures in a broader range of materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI