Integrating Machine Learning and Multitargeted Drug Design to Combat Antimicrobial Resistance: A Systematic Review

抗菌剂 药品 抗菌药物 医学 抗药性 药理学 生物 微生物学
作者
Nagmi Bano,Salman Arafath Mohammed,Khalid Raza
出处
期刊:Journal of Drug Targeting [Taylor & Francis]
卷期号:33 (3): 384-396
标识
DOI:10.1080/1061186x.2024.2428984
摘要

Antimicrobial resistance (AMR) is a critical global health challenge, undermining the efficacy of antimicrobial drugs against microorganisms like bacteria, fungi and viruses. Multidrug resistance (MDR) arises when microorganisms become resistant to multiple antimicrobial agents. The World Health Organisation classifies AMR bacteria into priority list - I (critical), II (high) and III (medium), prompting action from nearly 170 countries. Six priority bacterial strains account for over 70% of AMR-related fatalities, contributing to more than 1.3 million direct deaths annually and linked to over 5 million deaths globally. Enterobacteriaceae, including Escherichia coli, Salmonella enterica and Klebsiella pneumoniae, significantly contribute to AMR fatalities. This systematic literature review explores how machine learning (ML) and multitargeted drug design (MTDD) can combat AMR in Enterobacteriaceae. We followed PRISMA guidelines and comprehensively analysed current prospects and limitations by mining PubMed and Scopus literature databases. Innovative strategies integrating AI algorithms with advanced computational techniques allow for the analysis of vast datasets, identification of novel drug targets, prediction of resistance mechanisms, and optimisation of drug molecules to overcome resistance. Leveraging ML and MTDD is crucial for both advancing our fight against AMR in Enterobacteriaceae, and developing combination therapies that target multiple bacterial survival pathways, reducing the risk of resistance development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xiaopei完成签到,获得积分10
1秒前
啥,这都是啥完成签到,获得积分10
3秒前
Falling完成签到,获得积分10
4秒前
科研通AI5应助小仙采纳,获得10
4秒前
李爱国应助Luna采纳,获得10
5秒前
6秒前
7秒前
凯凯完成签到,获得积分10
7秒前
8秒前
W~舞完成签到,获得积分10
9秒前
Cdy完成签到,获得积分10
9秒前
无奈世立发布了新的文献求助10
10秒前
雪白浩天完成签到,获得积分10
10秒前
ding应助grumpysquirel采纳,获得10
11秒前
南风完成签到 ,获得积分10
11秒前
12秒前
陈甸甸发布了新的文献求助10
14秒前
Persevere完成签到,获得积分10
14秒前
啦啦啦啦完成签到,获得积分10
14秒前
cdercder应助tjfwg采纳,获得10
15秒前
华仔完成签到,获得积分10
16秒前
正直的如凡完成签到,获得积分10
17秒前
17秒前
17秒前
ZDY完成签到,获得积分10
18秒前
Falling发布了新的文献求助10
18秒前
哈哈呀完成签到 ,获得积分10
18秒前
20秒前
dadigege应助一颗葡萄采纳,获得10
21秒前
22秒前
关琦完成签到,获得积分10
22秒前
22秒前
欢喜的秋玲完成签到,获得积分10
23秒前
你今天学了多少完成签到 ,获得积分10
23秒前
脱壳金蝉完成签到,获得积分10
23秒前
guochang发布了新的文献求助10
23秒前
Running完成签到,获得积分10
24秒前
细心斩发布了新的文献求助30
24秒前
旺仔秋秋糖完成签到,获得积分10
25秒前
ari发布了新的文献求助10
26秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801189
求助须知:如何正确求助?哪些是违规求助? 3346865
关于积分的说明 10330761
捐赠科研通 3063197
什么是DOI,文献DOI怎么找? 1681450
邀请新用户注册赠送积分活动 807586
科研通“疑难数据库(出版商)”最低求助积分说明 763729