Predicting Paretic Gait Trajectories Using sEMG with the ISSA-CNN-SVR Model

计算机科学 步态 人工智能 计算机视觉 弹道 模式识别(心理学) 物理 物理医学与康复 天文 医学
作者
Liangjie Tu,Kewen Zhang,Mingyu Du,Guanjun Bao,Tao Liu,Bingfei Fan,Shibo Cai
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:: 1-1
标识
DOI:10.1109/jsen.2024.3523941
摘要

The continuous prediction of the desired gait trajectory of the paretic leg is a key task for the lower limb rehabilitation robot to assist the coordinated motion of the healthy and paretic legs of stroke patients, which has important research significance. In this paper, we propose a continuous prediction method for the desired gait trajectory of the paretic leg based on the sEMG signal of the healthy leg. In this method, an ISSA-CNN-SVR cascade network prediction model is designed. Based on this model, the mapping relationship between the sEMG signal of the healthy leg and the hip and knee joint angle of the paretic leg is established. The model input is the 8-channel sEMG signal of the healthy leg in the current instantaneous moment, and the output is the desired gait trajectory (hip and knee joint angle trajectories) of the paretic leg in the instantaneous moment after 100 ms. We recruited eight healthy participants for the validation experiments. Results indicate that the proposed method can continuously and smoothly predict the hip and knee joint angle trajectories of the paretic leg for the instantaneous moment after 100 ms based on the sEMG signal of the healthy leg and the ISSA-CNN-SVR model. The average RMSE of the predicted hip and knee joint angle trajectories of the paretic leg are 4.643° and 6.845°, with average R 2 being 0.855 and 0.857, respectively, demonstrating a high level of fitting. Therefore, this study is of great significance to improve the gait coordination of the healthy and paretic legs of robot-assisted stroke patients in the process of rehabilitation training.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Shawn发布了新的文献求助10
1秒前
1秒前
好蓝发布了新的文献求助10
1秒前
wangmoqian关注了科研通微信公众号
2秒前
科目三应助Harden采纳,获得10
3秒前
SciGPT应助helo采纳,获得10
3秒前
4秒前
4秒前
哈基米德应助_蝴蝶小姐采纳,获得20
5秒前
科目三应助_蝴蝶小姐采纳,获得10
5秒前
英俊的铭应助可爱语芹采纳,获得10
6秒前
阿欣完成签到,获得积分10
6秒前
周稅完成签到,获得积分10
7秒前
小巧的柏柳完成签到 ,获得积分10
7秒前
zj发布了新的文献求助10
8秒前
11111111发布了新的文献求助10
8秒前
8秒前
9秒前
12秒前
13秒前
刘涵发布了新的文献求助10
13秒前
_蝴蝶小姐完成签到,获得积分10
14秒前
Raissa关注了科研通微信公众号
14秒前
肖易发布了新的文献求助10
15秒前
Zx_1993应助科研通管家采纳,获得60
16秒前
科研通AI6应助科研通管家采纳,获得30
16秒前
所所应助科研通管家采纳,获得10
16秒前
哭泣又柔发布了新的文献求助10
16秒前
Jasper应助科研通管家采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
SciGPT应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
小马甲应助科研通管家采纳,获得50
16秒前
Hello应助科研通管家采纳,获得30
16秒前
顾矜应助科研通管家采纳,获得10
17秒前
bkagyin应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263389
求助须知:如何正确求助?哪些是违规求助? 4423991
关于积分的说明 13771463
捐赠科研通 4298989
什么是DOI,文献DOI怎么找? 2358843
邀请新用户注册赠送积分活动 1355116
关于科研通互助平台的介绍 1316331