亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automating alloy design and discovery with physics-aware multimodal multiagent AI

计算机科学 灵活性(工程) 过程(计算) 人工智能 数据科学 生成语法 领域(数学分析) 深度学习 钥匙(锁) 系统工程 机器学习 人机交互 工程类 数学分析 统计 数学 计算机安全 操作系统
作者
Alireza Ghafarollahi,Markus J. Buehler
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:122 (4) 被引量:4
标识
DOI:10.1073/pnas.2414074122
摘要

The design of new alloys is a multiscale problem that requires a holistic approach that involves retrieving relevant knowledge, applying advanced computational methods, conducting experimental validations, and analyzing the results, a process that is typically slow and reserved for human experts. Machine learning can help accelerate this process, for instance, through the use of deep surrogate models that connect structural and chemical features to material properties, or vice versa. However, existing data-driven models often target specific material objectives, offering limited flexibility to integrate out-of-domain knowledge and cannot adapt to new, unforeseen challenges. Here, we overcome these limitations by leveraging the distinct capabilities of multiple AI agents that collaborate autonomously within a dynamic environment to solve complex materials design tasks. The proposed physics-aware generative AI platform, AtomAgents, synergizes the intelligence of large language models (LLMs) and the dynamic collaboration among AI agents with expertise in various domains, including knowledge retrieval, multimodal data integration, physics-based simulations, and comprehensive results analysis across modalities. The concerted effort of the multiagent system allows for addressing complex materials design problems, as demonstrated by examples that include autonomously designing metallic alloys with enhanced properties compared to their pure counterparts. Our results enable accurate prediction of key characteristics across alloys and highlight the crucial role of solid solution alloying to steer the development of advanced metallic alloys. Our framework enhances the efficiency of complex multiobjective design tasks and opens avenues in fields such as biomedical materials engineering, renewable energy, and environmental sustainability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
syan完成签到,获得积分10
15秒前
伏城完成签到 ,获得积分10
18秒前
研友_850aeZ完成签到,获得积分0
31秒前
有点鸭梨呀完成签到 ,获得积分10
32秒前
SCIfafafafa发布了新的文献求助10
51秒前
大个应助北雨采纳,获得10
53秒前
54秒前
1分钟前
Swear完成签到 ,获得积分10
1分钟前
oleskarabach发布了新的文献求助30
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
舒适的映易完成签到,获得积分10
1分钟前
oleskarabach完成签到,获得积分20
1分钟前
lanlan发布了新的文献求助30
1分钟前
bkagyin应助QQ采纳,获得30
1分钟前
2分钟前
h0jian09完成签到,获得积分10
2分钟前
无语的诗柳完成签到 ,获得积分10
2分钟前
2分钟前
李爱国应助solarlad采纳,获得10
2分钟前
3分钟前
星星发布了新的文献求助10
3分钟前
3分钟前
3分钟前
科研通AI2S应助星星采纳,获得10
3分钟前
仙女完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
小二郎应助科研通管家采纳,获得10
3分钟前
科目三应助小刘采纳,获得10
3分钟前
Georgechan完成签到,获得积分10
3分钟前
顾矜应助Kunhui采纳,获得30
3分钟前
3分钟前
愉快的犀牛完成签到 ,获得积分10
4分钟前
酷波er应助Wsssss采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3922054
求助须知:如何正确求助?哪些是违规求助? 3466826
关于积分的说明 10945341
捐赠科研通 3195734
什么是DOI,文献DOI怎么找? 1765796
邀请新用户注册赠送积分活动 855756
科研通“疑难数据库(出版商)”最低求助积分说明 795077