Automating alloy design and discovery with physics-aware multimodal multiagent AI

计算机科学 灵活性(工程) 过程(计算) 人工智能 数据科学 生成语法 领域(数学分析) 深度学习 钥匙(锁) 系统工程 机器学习 人机交互 工程类 数学分析 统计 数学 计算机安全 操作系统
作者
Alireza Ghafarollahi,Markus J. Buehler
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:122 (4) 被引量:5
标识
DOI:10.1073/pnas.2414074122
摘要

The design of new alloys is a multiscale problem that requires a holistic approach that involves retrieving relevant knowledge, applying advanced computational methods, conducting experimental validations, and analyzing the results, a process that is typically slow and reserved for human experts. Machine learning can help accelerate this process, for instance, through the use of deep surrogate models that connect structural and chemical features to material properties, or vice versa. However, existing data-driven models often target specific material objectives, offering limited flexibility to integrate out-of-domain knowledge and cannot adapt to new, unforeseen challenges. Here, we overcome these limitations by leveraging the distinct capabilities of multiple AI agents that collaborate autonomously within a dynamic environment to solve complex materials design tasks. The proposed physics-aware generative AI platform, AtomAgents, synergizes the intelligence of large language models (LLMs) and the dynamic collaboration among AI agents with expertise in various domains, including knowledge retrieval, multimodal data integration, physics-based simulations, and comprehensive results analysis across modalities. The concerted effort of the multiagent system allows for addressing complex materials design problems, as demonstrated by examples that include autonomously designing metallic alloys with enhanced properties compared to their pure counterparts. Our results enable accurate prediction of key characteristics across alloys and highlight the crucial role of solid solution alloying to steer the development of advanced metallic alloys. Our framework enhances the efficiency of complex multiobjective design tasks and opens avenues in fields such as biomedical materials engineering, renewable energy, and environmental sustainability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
烟花应助xuxuxu采纳,获得10
1秒前
英俊的铭应助Efaith采纳,获得10
1秒前
1秒前
1秒前
加佲发布了新的文献求助10
2秒前
Cc发布了新的文献求助10
3秒前
moonlight发布了新的文献求助10
3秒前
鲨鱼辣椒完成签到,获得积分10
3秒前
4秒前
风清扬发布了新的文献求助10
4秒前
心系天下完成签到 ,获得积分10
5秒前
6秒前
7秒前
cccc发布了新的文献求助10
8秒前
滕茹嫣完成签到,获得积分20
8秒前
9秒前
himmer完成签到,获得积分10
9秒前
Rye227发布了新的文献求助10
10秒前
辛夷完成签到,获得积分10
10秒前
小川完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
滕茹嫣发布了新的文献求助10
11秒前
12秒前
科研通AI6应助luojimao采纳,获得10
12秒前
12秒前
乐乐应助背后的小白菜采纳,获得10
13秒前
米味锅巴发布了新的文献求助10
14秒前
聂青枫完成签到,获得积分10
14秒前
qiuqiu815777完成签到,获得积分10
14秒前
辛夷发布了新的文献求助10
15秒前
Hello应助谢谢谢谢谢谢采纳,获得10
15秒前
15秒前
北执完成签到,获得积分10
15秒前
16秒前
17秒前
Efaith发布了新的文献求助10
17秒前
19秒前
所所应助He采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419669
求助须知:如何正确求助?哪些是违规求助? 4534982
关于积分的说明 14147461
捐赠科研通 4451639
什么是DOI,文献DOI怎么找? 2441798
邀请新用户注册赠送积分活动 1433412
关于科研通互助平台的介绍 1410641