已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine-Learning-Enabled Framework in Engineering Plastics Discovery: A Case Study of Designing Polyimides with Desired Glass-Transition Temperature

材料科学 玻璃化转变 纳米技术 机械工程 复合材料 聚合物 工程物理 工程类
作者
Songyang Zhang,Xiaojie He,Xuejian Xia,Peng Xiao,Qi Wu,Feng Zheng,Qinghua Lu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (31): 37893-37902 被引量:28
标识
DOI:10.1021/acsami.3c05376
摘要

Great and continuous efforts have been made to discover high-performance engineering plastics with specific properties to replace traditional engineering materials in many fields. The utilization of machine learning (ML) has brought more opportunities for the discovery of high-performing engineering plastics. However, hindered by either the relatively small database or a lack of accurate structure descriptors with clear physical and chemical meanings relating to polymer properties, the current ML studies show some flaws in the accuracy and efficiency in polymer development. Herein, we collected a dataset of 878 polyimides (PI), one of the best engineering plastics, with experimentally measured glass-transition temperature (Tg) values, and developed a rapid and accurate ML approach to design PI candidates with the desired Tg value. After the conversion from PI structures into "mechanically identifiable" SMILES (Simplified molecular input line entry system) language, the eight most critical descriptors were ultimately obtained by multiple analysis methods. The physiochemical meaning of the key descriptors was further analyzed carefully to translate the implicit "machine language" to chemical knowledge. The artificial neural network (ANN)-based model gave the most accurate results with a root-mean-square error of ∼11 K among the studied ML methods. More importantly, three potential PI candidates with desired Tg (DPIs) were designed according to the chemical insight of the key descriptors, which were then verified by experiments. The experimental and predicted Tg values of DPIs have an acceptable average deviation of ca. 3.66%. This accuracy has reached the level of the traditional molecular simulation, but the time consumption and hold-up computing resource are tremendously reduced. Furthermore, the current ML approach could offer a scalable and adaptable framework in future engineer plastics innovation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyb完成签到 ,获得积分10
3秒前
吴金芮完成签到,获得积分10
3秒前
4秒前
5秒前
小象完成签到,获得积分10
5秒前
隐形曼青应助沐兮采纳,获得10
7秒前
YJO10发布了新的文献求助10
7秒前
小凯完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
10秒前
11秒前
hhhxxx发布了新的文献求助10
11秒前
14秒前
momo完成签到,获得积分10
15秒前
16秒前
慕玖淇完成签到 ,获得积分10
16秒前
17秒前
17秒前
会会发布了新的文献求助10
20秒前
小阳阳5010完成签到 ,获得积分10
20秒前
20秒前
Criminology34应助midx采纳,获得10
21秒前
沐兮发布了新的文献求助10
21秒前
iman完成签到,获得积分10
21秒前
马里兰州蛙泳胡萝卜完成签到 ,获得积分10
23秒前
辛勤月饼完成签到,获得积分10
24秒前
25秒前
25秒前
西西弗斯的石头完成签到 ,获得积分10
26秒前
29秒前
31秒前
清秀小霸王关注了科研通微信公众号
33秒前
33秒前
33秒前
tcmlida完成签到,获得积分10
35秒前
红豆抹茶完成签到,获得积分10
35秒前
JacekYu完成签到 ,获得积分0
36秒前
37秒前
C‘x发布了新的文献求助10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407525
求助须知:如何正确求助?哪些是违规求助? 4525102
关于积分的说明 14100961
捐赠科研通 4438850
什么是DOI,文献DOI怎么找? 2436526
邀请新用户注册赠送积分活动 1428483
关于科研通互助平台的介绍 1406504