清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Granger Causal Inference Based on Dual Laplacian Distribution and Its Application to MI-BCI Classification

人工智能 计算机科学 推论 模式识别(心理学) 因果推理 对偶(语法数字) 计量经济学 数学 机器学习 哲学 语言学
作者
Peiyang Li,Xiaohui Gao,Cunbo Li,Chanlin Yi,Wei Huang,Yajing Si,Fali Li,Zehong Cao,Yin Tian,Peng Xu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:5
标识
DOI:10.1109/tnnls.2023.3292179
摘要

Granger causality-based effective brain connectivity provides a powerful tool to probe the neural mechanism for information processing and the potential features for brain computer interfaces. However, in real applications, traditional Granger causality is prone to the influence of outliers, such as inevitable ocular artifacts, resulting in unreasonable brain linkages and the failure to decipher inherent cognition states. In this work, motivated by constructing the sparse causality brain networks under the strong physiological outlier noise conditions, we proposed a dual Laplacian Granger causality analysis (DLap-GCA) by imposing Laplacian distributions on both model parameters and residuals. In essence, the first Laplacian assumption on residuals will resist the influence of outliers in electroencephalogram (EEG) on causality inference, and the second Laplacian assumption on model parameters will sparsely characterize the intrinsic interactions among multiple brain regions. Through simulation study, we quantitatively verified its effectiveness in suppressing the influence of complex outliers, the stable capacity for model estimation, and sparse network inference. The application to motor-imagery (MI) EEG further reveals that our method can effectively capture the inherent hemispheric lateralization of MI tasks with sparse patterns even under strong noise conditions. The MI classification based on the network features derived from the proposed approach shows higher accuracy than other existing traditional approaches, which is attributed to the discriminative network structures being captured in a timely manner by DLap-GCA even under the single-trial online condition. Basically, these results consistently show its robustness to the influence of complex outliers and the capability of characterizing representative brain networks for cognition information processing, which has the potential to offer reliable network structures for both cognitive studies and future brain-computer interface (BCI) realization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wwrjj完成签到,获得积分10
1秒前
文与武完成签到 ,获得积分10
2秒前
今后应助2222222222采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
43秒前
陈秋完成签到,获得积分10
44秒前
小二郎应助zpf采纳,获得10
50秒前
58秒前
zpf发布了新的文献求助10
1分钟前
chloe完成签到 ,获得积分10
1分钟前
1分钟前
2222222222发布了新的文献求助10
1分钟前
zpf完成签到,获得积分20
1分钟前
Hua完成签到,获得积分10
1分钟前
ky完成签到,获得积分10
1分钟前
2分钟前
Akim应助科研通管家采纳,获得10
2分钟前
星辰大海应助科研通管家采纳,获得10
2分钟前
2分钟前
平常破茧完成签到 ,获得积分10
2分钟前
2分钟前
WebCasa应助jyy采纳,获得10
2分钟前
wayne完成签到 ,获得积分10
2分钟前
2分钟前
穆紫月懒阳阳完成签到,获得积分10
2分钟前
AmyHu完成签到,获得积分10
3分钟前
3分钟前
3分钟前
李健的小迷弟应助2222222222采纳,获得10
3分钟前
haralee完成签到 ,获得积分10
3分钟前
蛋妮完成签到 ,获得积分10
3分钟前
哭泣青烟完成签到 ,获得积分10
3分钟前
dddd完成签到 ,获得积分10
3分钟前
shining完成签到,获得积分10
4分钟前
pufanlg完成签到,获得积分10
4分钟前
大水完成签到 ,获得积分10
4分钟前
Zhanghh87应助科研通管家采纳,获得10
4分钟前
阿狸完成签到 ,获得积分0
4分钟前
阳炎完成签到,获得积分10
4分钟前
Emperor完成签到 ,获得积分0
4分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1018
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4080993
求助须知:如何正确求助?哪些是违规求助? 3620418
关于积分的说明 11486526
捐赠科研通 3335970
什么是DOI,文献DOI怎么找? 1833984
邀请新用户注册赠送积分活动 902808
科研通“疑难数据库(出版商)”最低求助积分说明 821313