Granger Causal Inference Based on Dual Laplacian Distribution and Its Application to MI-BCI Classification

人工智能 计算机科学 推论 模式识别(心理学) 因果推理 对偶(语法数字) 计量经济学 数学 机器学习 哲学 语言学
作者
Peiyang Li,Xiaohui Gao,Cunbo Li,Chanlin Yi,Wei Huang,Yajing Si,Fali Li,Zehong Cao,Yin Tian,Peng Xu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:5
标识
DOI:10.1109/tnnls.2023.3292179
摘要

Granger causality-based effective brain connectivity provides a powerful tool to probe the neural mechanism for information processing and the potential features for brain computer interfaces. However, in real applications, traditional Granger causality is prone to the influence of outliers, such as inevitable ocular artifacts, resulting in unreasonable brain linkages and the failure to decipher inherent cognition states. In this work, motivated by constructing the sparse causality brain networks under the strong physiological outlier noise conditions, we proposed a dual Laplacian Granger causality analysis (DLap-GCA) by imposing Laplacian distributions on both model parameters and residuals. In essence, the first Laplacian assumption on residuals will resist the influence of outliers in electroencephalogram (EEG) on causality inference, and the second Laplacian assumption on model parameters will sparsely characterize the intrinsic interactions among multiple brain regions. Through simulation study, we quantitatively verified its effectiveness in suppressing the influence of complex outliers, the stable capacity for model estimation, and sparse network inference. The application to motor-imagery (MI) EEG further reveals that our method can effectively capture the inherent hemispheric lateralization of MI tasks with sparse patterns even under strong noise conditions. The MI classification based on the network features derived from the proposed approach shows higher accuracy than other existing traditional approaches, which is attributed to the discriminative network structures being captured in a timely manner by DLap-GCA even under the single-trial online condition. Basically, these results consistently show its robustness to the influence of complex outliers and the capability of characterizing representative brain networks for cognition information processing, which has the potential to offer reliable network structures for both cognitive studies and future brain-computer interface (BCI) realization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助wqmdd采纳,获得10
1秒前
00完成签到 ,获得积分10
2秒前
daijk完成签到,获得积分10
4秒前
8秒前
gxh完成签到,获得积分10
9秒前
Hus11221完成签到,获得积分10
10秒前
tt大耳朵完成签到,获得积分10
10秒前
10秒前
qiao应助DYDSA采纳,获得25
12秒前
笨笨忘幽发布了新的文献求助10
13秒前
落寞凌柏完成签到,获得积分10
14秒前
辣辣完成签到,获得积分10
14秒前
wqmdd发布了新的文献求助10
15秒前
晴天完成签到,获得积分10
15秒前
丘比特应助风趣的梦露采纳,获得10
15秒前
Brady6完成签到,获得积分10
16秒前
苗广山完成签到,获得积分10
20秒前
悠悠完成签到 ,获得积分10
20秒前
HEAUBOOK应助wqmdd采纳,获得10
20秒前
彭于晏应助笨笨忘幽采纳,获得30
21秒前
cmy完成签到,获得积分10
23秒前
独自受罪完成签到 ,获得积分10
23秒前
26秒前
呵呵哒发布了新的文献求助30
28秒前
逃离地球完成签到 ,获得积分10
29秒前
33秒前
蒋时晏应助高大凌寒采纳,获得200
36秒前
小摩尔完成签到 ,获得积分10
40秒前
任风完成签到,获得积分10
42秒前
小乐儿~完成签到,获得积分10
43秒前
华仔应助斯文的傲珊采纳,获得10
44秒前
香冢弃了残红完成签到,获得积分10
44秒前
yao chen完成签到,获得积分10
44秒前
妙手回春板蓝根完成签到,获得积分10
46秒前
抹茶拿铁加奶砖完成签到 ,获得积分10
47秒前
不缺人YYDS完成签到,获得积分10
52秒前
223311完成签到,获得积分10
59秒前
传奇3应助mili采纳,获得10
1分钟前
遗迹小白完成签到,获得积分10
1分钟前
llllzzh完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780920
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10226987
捐赠科研通 3041612
什么是DOI,文献DOI怎么找? 1669520
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734