已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Granger Causal Inference Based on Dual Laplacian Distribution and Its Application to MI-BCI Classification

人工智能 计算机科学 推论 模式识别(心理学) 对偶(语法数字) 脑-机接口 数学 机器学习 心理学 哲学 脑电图 神经科学 语言学
作者
Peiyang Li,Xiaohui Gao,Cunbo Li,Chanlin Yi,Weijie Huang,Yajing Si,Fali Li,Zehong Cao,Yin Tian,Peng Xu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 16181-16195 被引量:20
标识
DOI:10.1109/tnnls.2023.3292179
摘要

Granger causality-based effective brain connectivity provides a powerful tool to probe the neural mechanism for information processing and the potential features for brain computer interfaces. However, in real applications, traditional Granger causality is prone to the influence of outliers, such as inevitable ocular artifacts, resulting in unreasonable brain linkages and the failure to decipher inherent cognition states. In this work, motivated by constructing the sparse causality brain networks under the strong physiological outlier noise conditions, we proposed a dual Laplacian Granger causality analysis (DLap-GCA) by imposing Laplacian distributions on both model parameters and residuals. In essence, the first Laplacian assumption on residuals will resist the influence of outliers in electroencephalogram (EEG) on causality inference, and the second Laplacian assumption on model parameters will sparsely characterize the intrinsic interactions among multiple brain regions. Through simulation study, we quantitatively verified its effectiveness in suppressing the influence of complex outliers, the stable capacity for model estimation, and sparse network inference. The application to motor-imagery (MI) EEG further reveals that our method can effectively capture the inherent hemispheric lateralization of MI tasks with sparse patterns even under strong noise conditions. The MI classification based on the network features derived from the proposed approach shows higher accuracy than other existing traditional approaches, which is attributed to the discriminative network structures being captured in a timely manner by DLap-GCA even under the single-trial online condition. Basically, these results consistently show its robustness to the influence of complex outliers and the capability of characterizing representative brain networks for cognition information processing, which has the potential to offer reliable network structures for both cognitive studies and future brain-computer interface (BCI) realization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十七完成签到,获得积分10
刚刚
zhenzhen完成签到,获得积分10
2秒前
充电宝应助杰哥不要采纳,获得10
2秒前
YORLAN发布了新的文献求助10
2秒前
whywhy发布了新的文献求助10
3秒前
专注寻菱发布了新的文献求助10
7秒前
7秒前
无花果应助风清扬采纳,获得10
7秒前
易琚完成签到,获得积分10
9秒前
好久不见发布了新的文献求助10
10秒前
10秒前
10秒前
天天快乐应助zcsun0244采纳,获得10
10秒前
chihiro发布了新的文献求助10
11秒前
香飘飘完成签到 ,获得积分10
11秒前
11秒前
cch完成签到,获得积分20
12秒前
小丸子完成签到,获得积分10
12秒前
以筱发布了新的文献求助10
12秒前
13秒前
Humble77完成签到,获得积分10
14秒前
enen发布了新的文献求助10
14秒前
waq完成签到,获得积分10
15秒前
15秒前
葫芦娃完成签到,获得积分20
15秒前
cccc1111111发布了新的文献求助10
16秒前
好久不见完成签到,获得积分10
16秒前
16秒前
小马完成签到,获得积分10
16秒前
杰哥不要发布了新的文献求助10
16秒前
17秒前
17秒前
18秒前
望轲完成签到 ,获得积分10
18秒前
李健完成签到,获得积分10
19秒前
19秒前
HH完成签到,获得积分10
20秒前
潇潇雨歇发布了新的文献求助10
20秒前
稳重的短靴完成签到 ,获得积分10
20秒前
Ale发布了新的文献求助10
21秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5611455
求助须知:如何正确求助?哪些是违规求助? 4695845
关于积分的说明 14888914
捐赠科研通 4725703
什么是DOI,文献DOI怎么找? 2545745
邀请新用户注册赠送积分活动 1510224
关于科研通互助平台的介绍 1473190