Granger Causal Inference Based on Dual Laplacian Distribution and Its Application to MI-BCI Classification

人工智能 计算机科学 推论 模式识别(心理学) 对偶(语法数字) 脑-机接口 数学 机器学习 心理学 哲学 脑电图 神经科学 语言学
作者
Peiyang Li,Xiaohui Gao,Cunbo Li,Chanlin Yi,Weijie Huang,Yajing Si,Fali Li,Zehong Cao,Yin Tian,Peng Xu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 16181-16195 被引量:20
标识
DOI:10.1109/tnnls.2023.3292179
摘要

Granger causality-based effective brain connectivity provides a powerful tool to probe the neural mechanism for information processing and the potential features for brain computer interfaces. However, in real applications, traditional Granger causality is prone to the influence of outliers, such as inevitable ocular artifacts, resulting in unreasonable brain linkages and the failure to decipher inherent cognition states. In this work, motivated by constructing the sparse causality brain networks under the strong physiological outlier noise conditions, we proposed a dual Laplacian Granger causality analysis (DLap-GCA) by imposing Laplacian distributions on both model parameters and residuals. In essence, the first Laplacian assumption on residuals will resist the influence of outliers in electroencephalogram (EEG) on causality inference, and the second Laplacian assumption on model parameters will sparsely characterize the intrinsic interactions among multiple brain regions. Through simulation study, we quantitatively verified its effectiveness in suppressing the influence of complex outliers, the stable capacity for model estimation, and sparse network inference. The application to motor-imagery (MI) EEG further reveals that our method can effectively capture the inherent hemispheric lateralization of MI tasks with sparse patterns even under strong noise conditions. The MI classification based on the network features derived from the proposed approach shows higher accuracy than other existing traditional approaches, which is attributed to the discriminative network structures being captured in a timely manner by DLap-GCA even under the single-trial online condition. Basically, these results consistently show its robustness to the influence of complex outliers and the capability of characterizing representative brain networks for cognition information processing, which has the potential to offer reliable network structures for both cognitive studies and future brain-computer interface (BCI) realization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
故意的鼠标完成签到,获得积分10
2秒前
sam完成签到,获得积分10
2秒前
理想发布了新的文献求助10
2秒前
dlfg发布了新的文献求助10
3秒前
5秒前
理想完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
热心又蓝完成签到,获得积分10
9秒前
张123发布了新的文献求助10
11秒前
12秒前
12秒前
春风沂水完成签到,获得积分10
13秒前
myt发布了新的文献求助10
14秒前
15秒前
大模型应助帅气笑槐采纳,获得10
15秒前
iiiicecream发布了新的文献求助10
17秒前
17秒前
dlfg完成签到,获得积分10
17秒前
kisaki发布了新的文献求助10
18秒前
19秒前
难过衬衫完成签到,获得积分10
19秒前
万能图书馆应助ctttt采纳,获得10
20秒前
JHY发布了新的文献求助10
20秒前
21秒前
难过衬衫发布了新的文献求助10
22秒前
24秒前
尹沐完成签到 ,获得积分10
24秒前
AA18236931952发布了新的文献求助10
24秒前
果子发布了新的文献求助10
26秒前
幽默枫完成签到,获得积分10
26秒前
loong发布了新的文献求助10
26秒前
iiiicecream完成签到,获得积分10
26秒前
jmn完成签到,获得积分10
29秒前
橡皮鱼发布了新的文献求助20
29秒前
楼一笑完成签到,获得积分10
29秒前
29秒前
赘婿应助kiki采纳,获得10
31秒前
淡定的w完成签到 ,获得积分10
31秒前
楼一笑发布了新的文献求助10
32秒前
承乐应助小冯采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605257
求助须知:如何正确求助?哪些是违规求助? 4689827
关于积分的说明 14861225
捐赠科研通 4700657
什么是DOI,文献DOI怎么找? 2541875
邀请新用户注册赠送积分活动 1507706
关于科研通互助平台的介绍 1472087