对抗制
稳健性(进化)
计算机科学
人气
深度学习
人工智能
机器学习
计算机安全
法学
基因
生物化学
化学
政治学
作者
Quan Zhang,Yongqiang Tian,Yifeng Ding,Shanshan Li,C. P. Sun,Yu Jiang,Jiaguang Sun
标识
DOI:10.1145/3597926.3598093
摘要
Adversarial attacks have been a threat to Deep Learning (DL) systems to be reckoned with. By adding human-imperceptible perturbation to benign inputs, adversarial attacks can cause the incorrect behavior of DL systems. Considering the popularity of DL systems in the industry, it is critical and urgent for developers to enhance the robustness of DL systems against adversarial attacks.
科研通智能强力驱动
Strongly Powered by AbleSci AI