Synchronization of train timetables in an urban rail network: A bi-objective optimization approach

计算机科学 准时 同步(交流) 火车 解算器 光学(聚焦) 元启发式 城市轨道交通 数学优化 运筹学 运输工程 工程类 计算机网络 算法 数学 物理 频道(广播) 光学 地图学 程序设计语言 地理
作者
Jiateng Yin,Miao Wang,Andrea D’Ariano,Jinlei Zhang,Lixing Yang
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier]
卷期号:174: 103142-103142 被引量:16
标识
DOI:10.1016/j.tre.2023.103142
摘要

As urban rail networks in big cities tend to expand, the synchronization of trains has become a key issue for improving the service quality of passengers because most urban rail transit systems in the world involve more than one connected line, and passengers must transfer between these lines. In contrast to most existing studies that focus on a single line, in this study, we focus on synchronized train timetable optimization in an urban rail transit network, considering the dynamic passenger demand with transfers as well as train loading capacity constraints. First, we propose a mixed-integer programming (MIP) formulation for the synchronization of training timetables, in which we consider the optimization of two objectives. The first objective is to minimize the total waiting time of passengers, involving arriving and transfer passengers. Our second objective is a synchronization quality indicator (SQI) with piecewise linear formulation, which we propose to evaluate the transfer convenience of passengers. Subsequently, we propose several linearization techniques to handle the nonlinear constraints in the MIP formulation, and we prove the tightness of our reformulations. To solve large-scale instances more efficiently, we also develop a hybrid adaptive large neighbor search algorithm that is compared with two benchmarks: the commercial solver CPLEX and a metaheuristic. Finally, we focus on a series of real-world instances based on historical data from the Beijing metro network. The results show that our algorithm outperforms both benchmarks, and the synchronized timetable generated by our approach reduces the average waiting time of passengers by 1.5% and improves the connection quality of the Beijing metro by 14.8%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助露亮采纳,获得10
1秒前
桎梏daren完成签到,获得积分10
1秒前
不懈奋进应助yuxingyao采纳,获得30
2秒前
大宝S欧D蜜应助Hilda007采纳,获得30
2秒前
2秒前
3秒前
小可完成签到,获得积分10
3秒前
4秒前
xzy998应助热心疾采纳,获得10
4秒前
dd完成签到,获得积分10
4秒前
桎梏daren发布了新的文献求助10
4秒前
5秒前
正直沧海发布了新的文献求助10
5秒前
xfye发布了新的文献求助20
5秒前
5秒前
6秒前
西瓜发布了新的文献求助10
6秒前
6秒前
明理的天抒完成签到 ,获得积分10
7秒前
田様应助LMELME采纳,获得10
7秒前
7秒前
ilk666完成签到,获得积分10
7秒前
Owen应助Coco不爱笑采纳,获得10
8秒前
王雪完成签到,获得积分10
8秒前
中考无语完成签到 ,获得积分10
9秒前
9秒前
9秒前
dd发布了新的文献求助10
10秒前
蚂蚱别跳发布了新的文献求助10
10秒前
眉间尺发布了新的文献求助10
11秒前
hyd1640完成签到,获得积分10
11秒前
冯波发布了新的文献求助20
11秒前
小刀刘发布了新的文献求助20
12秒前
12秒前
动听牛排发布了新的文献求助10
12秒前
13秒前
椰椰鲨完成签到,获得积分10
13秒前
暮沐晓光发布了新的文献求助10
14秒前
小蘑菇应助搞怪的康采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5542341
求助须知:如何正确求助?哪些是违规求助? 4628524
关于积分的说明 14609085
捐赠科研通 4569716
什么是DOI,文献DOI怎么找? 2505357
邀请新用户注册赠送积分活动 1482749
关于科研通互助平台的介绍 1454162