Genetic risk shared across 24 chronic pain conditions: identification and characterization with genomic structural equation modeling

慢性疼痛 全基因组关联研究 遗传关联 遗传学 生物 结构方程建模 生物信息学 单核苷酸多态性 基因型 神经科学 基因 计算机科学 机器学习
作者
Katerina Zorina-Lichtenwalter,Carmen I. Bango,Lukas Van Oudenhove,Marta Čeko,Martin A. Lindquist,Andrew D. Grotzinger,Matthew C. Keller,Naomi P. Friedman,Tor D. Wager
出处
期刊:Pain [Lippincott Williams & Wilkins]
卷期号:164 (10): 2239-2252 被引量:16
标识
DOI:10.1097/j.pain.0000000000002922
摘要

Chronic pain conditions frequently co-occur, suggesting common risks and paths to prevention and treatment. Previous studies have reported genetic correlations among specific groups of pain conditions and reported genetic risk for within-individual multisite pain counts (≤7). Here, we identified genetic risk for multiple distinct pain disorders across individuals using 24 chronic pain conditions and genomic structural equation modeling (Genomic SEM). First, we ran individual genome-wide association studies (GWASs) on all 24 conditions in the UK Biobank ( N ≤ 436,000) and estimated their pairwise genetic correlations. Then we used these correlations to model their genetic factor structure in Genomic SEM, using both hypothesis- and data-driven exploratory approaches. A complementary network analysis enabled us to visualize these genetic relationships in an unstructured manner. Genomic SEM analysis revealed a general factor explaining most of the shared genetic variance across all pain conditions and a second, more specific factor explaining genetic covariance across musculoskeletal pain conditions. Network analysis revealed a large cluster of conditions and identified arthropathic, back, and neck pain as potential hubs for cross-condition chronic pain. Additionally, we ran GWASs on both factors extracted in Genomic SEM and annotated them functionally. Annotation identified pathways associated with organogenesis, metabolism, transcription, and DNA repair, with overrepresentation of strongly associated genes exclusively in brain tissues. Cross-reference with previous GWASs showed genetic overlap with cognition, mood, and brain structure. These results identify common genetic risks and suggest neurobiological and psychosocial mechanisms that should be targeted to prevent and treat cross-condition chronic pain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WEI6完成签到,获得积分10
刚刚
1秒前
顺心静丹完成签到,获得积分10
1秒前
1秒前
无奈曼云完成签到,获得积分10
1秒前
隐形曼青应助sunset采纳,获得10
2秒前
彭于晏应助小余同学采纳,获得10
2秒前
深情安青应助BWL采纳,获得10
2秒前
爱悠悠完成签到 ,获得积分10
2秒前
wcy发布了新的文献求助10
3秒前
琉璃岁月发布了新的文献求助20
3秒前
zz完成签到,获得积分10
3秒前
3秒前
青鸟发布了新的文献求助10
3秒前
Hello应助ww采纳,获得10
4秒前
4秒前
4秒前
新颜完成签到 ,获得积分10
5秒前
5秒前
5秒前
6秒前
QL发布了新的文献求助20
6秒前
6秒前
6秒前
lunar发布了新的文献求助10
7秒前
曾泓跃完成签到 ,获得积分10
7秒前
dyfsj发布了新的文献求助10
8秒前
云在青天水在瓶完成签到,获得积分10
8秒前
可爱的函函应助1111采纳,获得10
9秒前
9秒前
9秒前
9秒前
细心的语蓉完成签到,获得积分10
9秒前
Mg一Mg完成签到,获得积分10
9秒前
VVV发布了新的文献求助10
9秒前
RR发布了新的文献求助10
10秒前
苹果从菡发布了新的文献求助10
10秒前
黑发挥会发黑完成签到,获得积分20
11秒前
田様应助婷杰采纳,获得10
11秒前
Sunny发布了新的文献求助10
12秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806041
求助须知:如何正确求助?哪些是违规求助? 3350870
关于积分的说明 10351903
捐赠科研通 3066760
什么是DOI,文献DOI怎么找? 1684143
邀请新用户注册赠送积分活动 809333
科研通“疑难数据库(出版商)”最低求助积分说明 765463