Genetic risk shared across 24 chronic pain conditions: identification and characterization with genomic structural equation modeling

慢性疼痛 全基因组关联研究 遗传关联 遗传学 生物 结构方程建模 遗传建筑学 生物信息学 单核苷酸多态性 基因型 神经科学 数量性状位点 基因 计算机科学 机器学习
作者
Katerina Zorina-Lichtenwalter,Carmen I. Bango,Lukas Van Oudenhove,Marta Čeko,Martin A. Lindquist,Andrew D. Grotzinger,Matthew C. Keller,Naomi P. Friedman,Tor D. Wager
出处
期刊:Pain [Lippincott Williams & Wilkins]
卷期号:164 (10): 2239-2252 被引量:34
标识
DOI:10.1097/j.pain.0000000000002922
摘要

Chronic pain conditions frequently co-occur, suggesting common risks and paths to prevention and treatment. Previous studies have reported genetic correlations among specific groups of pain conditions and reported genetic risk for within-individual multisite pain counts (≤7). Here, we identified genetic risk for multiple distinct pain disorders across individuals using 24 chronic pain conditions and genomic structural equation modeling (Genomic SEM). First, we ran individual genome-wide association studies (GWASs) on all 24 conditions in the UK Biobank ( N ≤ 436,000) and estimated their pairwise genetic correlations. Then we used these correlations to model their genetic factor structure in Genomic SEM, using both hypothesis- and data-driven exploratory approaches. A complementary network analysis enabled us to visualize these genetic relationships in an unstructured manner. Genomic SEM analysis revealed a general factor explaining most of the shared genetic variance across all pain conditions and a second, more specific factor explaining genetic covariance across musculoskeletal pain conditions. Network analysis revealed a large cluster of conditions and identified arthropathic, back, and neck pain as potential hubs for cross-condition chronic pain. Additionally, we ran GWASs on both factors extracted in Genomic SEM and annotated them functionally. Annotation identified pathways associated with organogenesis, metabolism, transcription, and DNA repair, with overrepresentation of strongly associated genes exclusively in brain tissues. Cross-reference with previous GWASs showed genetic overlap with cognition, mood, and brain structure. These results identify common genetic risks and suggest neurobiological and psychosocial mechanisms that should be targeted to prevent and treat cross-condition chronic pain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tinatian270完成签到,获得积分10
1秒前
coolkid应助刚子采纳,获得10
2秒前
开花发布了新的文献求助10
3秒前
Starry完成签到,获得积分10
4秒前
6秒前
8秒前
鹏虫虫发布了新的文献求助10
10秒前
Pp完成签到,获得积分10
11秒前
11秒前
14秒前
dodo应助JSM采纳,获得300
16秒前
深情的海雪完成签到,获得积分10
16秒前
共享精神应助Whell采纳,获得10
17秒前
木穹完成签到,获得积分10
18秒前
猪猪hero发布了新的文献求助10
18秒前
19秒前
文龙发布了新的文献求助10
19秒前
21秒前
桐桐应助典雅的俊驰采纳,获得10
25秒前
华仔应助wdb采纳,获得10
26秒前
wave发布了新的文献求助10
26秒前
27秒前
马铃薯完成签到,获得积分10
29秒前
30秒前
nancy93228应助高大元蝶采纳,获得10
30秒前
lewis完成签到,获得积分10
30秒前
mm255发布了新的文献求助30
33秒前
ding应助lewis采纳,获得10
34秒前
vivian发布了新的文献求助20
35秒前
37秒前
隐形曼青应助默默安双采纳,获得10
40秒前
领导范儿应助VitoLi采纳,获得10
40秒前
wdb发布了新的文献求助10
42秒前
42秒前
46秒前
46秒前
flower发布了新的文献求助20
46秒前
CodeCraft应助无聊的凉面采纳,获得10
47秒前
47秒前
自然谷波完成签到,获得积分20
47秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3942423
求助须知:如何正确求助?哪些是违规求助? 3487755
关于积分的说明 11044874
捐赠科研通 3218087
什么是DOI,文献DOI怎么找? 1778781
邀请新用户注册赠送积分活动 864420
科研通“疑难数据库(出版商)”最低求助积分说明 799438