操作员(生物学)
反向
反问题
桥(图论)
边界(拓扑)
计算机科学
边值问题
复合数
空格(标点符号)
压力(语言学)
机械设计
结构工程
材料科学
数学优化
机械工程
算法
数学
工程类
几何学
数学分析
内科学
生物化学
哲学
抑制因子
语言学
化学
操作系统
基因
医学
转录因子
作者
Chuang Liu,QiangSheng He,Aiguo Zhao,Tao Wu,Zhaoshang Song,Bing Liu,Chuang Feng
标识
DOI:10.1142/s175882512350028x
摘要
Materials-by-design to develop high performance composite materials is often computational intractable due to the tremendous design space. Here, a deep operator network (DeepONet) is presented to bridge the gap between the material design space and mechanical behaviors. The mechanical response such as stress or strain can be predicted directly from material makeup efficiently, and a good accuracy is observed on unseen data even with a small amount of training data. Furthermore, the proposed approach can predict mechanical response of complex materials regardless of geometry, constitutive relations, and boundary conditions. Combined with optimization algorithms, the network offers an efficient tool to solve inverse design problems of composite materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI