A New Siamese Heterogeneous Convolutional Neural Networks Based on Attention Mechanism and Feature Pyramid

计算机科学 卷积神经网络 人工智能 特征(语言学) 核(代数) 模式识别(心理学) 卷积(计算机科学) 特征提取 棱锥(几何) 计算机视觉 深度学习 人工神经网络 数学 几何学 语言学 组合数学 哲学
作者
Zhenyu Lu,Yuelou Bian,Ting-Ya Yang,Quanbo Ge,Yuanliang Wang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (1): 13-24 被引量:5
标识
DOI:10.1109/tcyb.2022.3207431
摘要

Accuracy and speed are the most important indexes for evaluating many object tracking algorithms. However, when constructing a deep fully convolutional neural network (CNN), the use of deep network feature tracking will cause tracking drift due to the effects of convolution padding, receptive field (RF), and overall network step size. The speed of the tracker will also decrease. This article proposes a fully convolutional siamese network object tracking algorithm that combines the attention mechanism with the feature pyramid network (FPN), and uses heterogeneous convolution kernels to reduce the amount of calculations (FLOPs) and parameters. The tracker first uses a new fully CNN to extract image features, and introduces a channel attention mechanism in the feature extraction process to improve the representation ability of convolutional features. Then use the FPN to fuse the convolutional features of high and low layers, learn the similarity of the fused features, and train the fully CNNs. Finally, the heterogeneous convolutional kernel is used to replace the standard convolution kernel to improve the speed of the algorithm, thereby making up for the efficiency loss caused by the feature pyramid model. In this article, the tracker is experimentally verified and analyzed on the VOT-2017, VOT-2018, OTB-2013, and OTB-2015 datasets. The results show that our tracker has achieved better results than the state-of-the-art trackers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Dr发布了新的文献求助10
刚刚
bkagyin应助dong采纳,获得10
刚刚
yangxiaoya发布了新的文献求助10
刚刚
科研通AI5应助标致千凡采纳,获得10
1秒前
幸福小松鼠完成签到,获得积分10
1秒前
1秒前
如意契发布了新的文献求助10
2秒前
2秒前
阿离完成签到,获得积分10
2秒前
2秒前
ding应助zhang采纳,获得10
3秒前
搜集达人应助ShengzhangLiu采纳,获得10
3秒前
3秒前
MYN发布了新的文献求助10
4秒前
小嘎完成签到,获得积分10
4秒前
英俊的铭应助Kevin采纳,获得10
4秒前
4秒前
充电宝应助xin采纳,获得10
5秒前
李梓权发布了新的文献求助10
5秒前
6秒前
6秒前
李健的小迷弟应助LMM采纳,获得10
6秒前
jkdajsk发布了新的文献求助10
6秒前
优美采梦发布了新的文献求助10
7秒前
随心发布了新的文献求助10
7秒前
7秒前
7秒前
喝喂辉完成签到,获得积分10
7秒前
半瓶水才快乐完成签到,获得积分10
8秒前
阿玲完成签到,获得积分10
8秒前
misa完成签到 ,获得积分10
9秒前
9秒前
蒋瑞轩发布了新的文献求助10
10秒前
斯文的念文完成签到,获得积分10
11秒前
深情安青应助pck1212123采纳,获得10
11秒前
lihuanmoon完成签到,获得积分10
11秒前
俊逸的卿发布了新的文献求助10
12秒前
华仔应助冷静导师采纳,获得10
12秒前
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790460
求助须知:如何正确求助?哪些是违规求助? 3335150
关于积分的说明 10273529
捐赠科研通 3051578
什么是DOI,文献DOI怎么找? 1674737
邀请新用户注册赠送积分活动 802803
科研通“疑难数据库(出版商)”最低求助积分说明 760907