YOLO-MS: Multispectral Object Detection via Feature Interaction and Self-Attention Guided Fusion

多光谱图像 计算机科学 人工智能 特征(语言学) 目标检测 模式识别(心理学) 计算机视觉 滤波器(信号处理) 图像融合 融合 集合(抽象数据类型) 对象(语法) 传感器融合 像素 图像(数学) 哲学 程序设计语言 语言学
作者
Yumin Xie,Langwen Zhang,Xiaoyuan Yu,Wei Xie
出处
期刊:IEEE Transactions on Cognitive and Developmental Systems [Institute of Electrical and Electronics Engineers]
卷期号:15 (4): 2132-2143 被引量:13
标识
DOI:10.1109/tcds.2023.3238181
摘要

Object detection is essential for an autonomous driving sensing system. Since the light condition is changed in unconstrained scenarios, the detection accuracy based on visible images can be greatly degraded. Although the detection accuracy can be improved by fusing visible and infrared images, existing multispectral object detection (MOD) algorithms suffer from inadequate intermodal interaction and a lack of global dependence in the fusion approach. Thus, we propose an MOD framework called YOLO-MS by designing a feature interaction and self-attention fusion network (FISAFN) as the backbone network. Within the FISAFN, correlations between two modalities are extracted by the feature interaction module (FIM) for reconstructing the information components of each modality and enhancing capability of information exchange. To filter redundant features and enhance complementary features, long-range information dependence between two modalities are established by using a self-attention feature fusion module (SAFFM). Thus, a better information richness of the fused features can be achieved. Experimental results on the FLIR-aligned data set and the M3FD data set demonstrate that the proposed YOLO-MS performs favorably against state-of-the-art approaches, including feature-level fusion and pixel-level fusion. And further, the proposed YOLO-MS possesses good detection performance under diverse scene conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是你宇哥21完成签到,获得积分10
刚刚
团团关注了科研通微信公众号
1秒前
1秒前
mt发布了新的文献求助10
2秒前
Hello应助洛杉矶的奥斯卡采纳,获得10
3秒前
菲菲发布了新的文献求助10
3秒前
丘比特应助传统的松鼠采纳,获得10
4秒前
4秒前
5秒前
yao完成签到,获得积分10
5秒前
娇气的笑蓝完成签到,获得积分10
6秒前
可靠的纲发布了新的文献求助10
7秒前
ElsaFan完成签到,获得积分10
7秒前
WW完成签到,获得积分10
8秒前
8秒前
御剑乘风来完成签到,获得积分10
9秒前
称心的大米完成签到,获得积分10
9秒前
传奇3应助小汤采纳,获得10
10秒前
1111111111111发布了新的文献求助10
10秒前
xiao_niu完成签到,获得积分10
10秒前
10秒前
细腻飞柏发布了新的文献求助10
11秒前
Akim应助折耳根采纳,获得10
12秒前
共享精神应助笔花医镜采纳,获得10
12秒前
12秒前
13秒前
CodeCraft应助jing采纳,获得10
13秒前
14秒前
活力的冬云完成签到,获得积分10
14秒前
ding应助leolin采纳,获得10
14秒前
赘婿应助在写了采纳,获得10
16秒前
1230发布了新的文献求助10
17秒前
111完成签到,获得积分10
17秒前
小园饼干发布了新的文献求助10
18秒前
18秒前
李健的粉丝团团长应助memo采纳,获得10
18秒前
18秒前
18秒前
岳岳完成签到 ,获得积分10
18秒前
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3947574
求助须知:如何正确求助?哪些是违规求助? 3492870
关于积分的说明 11066848
捐赠科研通 3223597
什么是DOI,文献DOI怎么找? 1781746
邀请新用户注册赠送积分活动 866431
科研通“疑难数据库(出版商)”最低求助积分说明 800332