Learning multi-scale features for speech emotion recognition with connection attention mechanism

计算机科学 话语 特征(语言学) 特征学习 人工智能 语音识别 模式识别(心理学) 代表(政治) 帧(网络) 卷积神经网络 情绪分类 光学(聚焦) 特征提取 融合机制 融合 哲学 物理 电信 光学 法学 脂质双层融合 语言学 政治 政治学
作者
Zengzhao Chen,Jiawen Li,Hai Liu,Xuyang Wang,Wang Hu,Qiuyu Zheng
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:214: 118943-118943 被引量:60
标识
DOI:10.1016/j.eswa.2022.118943
摘要

Speech emotion recognition (SER) has become a crucial topic in the field of human–computer interactions. Feature representation plays an important role in SER, but there are still many challenges in feature representation such as the inability to predict which features are most effective for SER and the cultural differences in emotion expression. Most previous studies use a single type of feature for the recognition task or conduct early fusion of features. However, a single type of feature cannot well reflect the emotions of speech signals. Also, different features contain different information, direct fusion cannot integrate the advantages of different features. To overcome these challenges, this paper proposes a parallel network for multi-scale SER based on a connection attention mechanism (AMSNet). AMSNet fuses fine-grained frame-level manual features with coarse-grained utterance-level deep features. Meanwhile, it adopts different speech emotion feature extraction modules according to the temporal and spatial features of speech signals, which enriches features and improves feature characterization. The network consists of a frame-level representation learning module (FRLM) based on the time structure and an utterance-level representation learning module (URLM) based on the global structure. Besides, improved attention-based long short-term memory (LSTM) is introduced into FRLM to focus on the frames that contribute more to the final emotion recognition result. In URLM, a convolutional neural network with the squeeze-and-excitation block (SCNN) is introduced to extract deep features. In addition, the connection attention mechanism is proposed for feature fusion, which applies different weights to different features. Extensive experiments are conducted on the IEMOCAP and EmoDB datasets, and the results demonstrate the effectiveness and performance superiority of AMSNet. Our code will be publicly available at https://codeocean.com/capsule/8636967/tree/v1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助知性的雅彤采纳,获得10
2秒前
玲玲玲完成签到,获得积分10
3秒前
自由的微风完成签到,获得积分10
4秒前
SciGPT应助罗大壮采纳,获得10
6秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
10秒前
天真的酒窝完成签到,获得积分10
13秒前
cherry完成签到 ,获得积分10
13秒前
14秒前
14秒前
小何发布了新的文献求助10
15秒前
16秒前
18秒前
18秒前
罗大壮发布了新的文献求助10
18秒前
Iris完成签到 ,获得积分10
19秒前
Ally发布了新的文献求助10
20秒前
茶茶完成签到,获得积分10
20秒前
酷酷的绮完成签到,获得积分10
21秒前
弦断陌殇应助努力小周采纳,获得50
22秒前
罗大壮完成签到,获得积分10
25秒前
25秒前
26秒前
29秒前
29秒前
30秒前
高贵梦秋发布了新的文献求助10
32秒前
33秒前
Linson发布了新的文献求助10
35秒前
SYY完成签到,获得积分10
36秒前
ahq发布了新的文献求助10
36秒前
somnus_fu发布了新的文献求助50
36秒前
citrus完成签到,获得积分10
37秒前
南京必吃发布了新的文献求助10
37秒前
38秒前
QiLe完成签到 ,获得积分10
39秒前
39秒前
量子星尘发布了新的文献求助10
42秒前
风中冰香应助WZ采纳,获得10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536873
求助须知:如何正确求助?哪些是违规求助? 4624540
关于积分的说明 14592255
捐赠科研通 4564957
什么是DOI,文献DOI怎么找? 2502101
邀请新用户注册赠送积分活动 1480843
关于科研通互助平台的介绍 1452073