分割
计算机科学
卷积(计算机科学)
棱锥(几何)
人工智能
算法
语义学(计算机科学)
雪
特征提取
卷积神经网络
特征(语言学)
图像分割
深度学习
人工神经网络
鉴定(生物学)
试验数据
计算机视觉
地质学
数学
哲学
几何学
程序设计语言
植物
地貌学
生物
语言学
作者
Wangyuan Zhao,Jiao Wei,Yujian Ye,Fenglei Han,Xinjie Qiu,Peng Xiao
摘要
To meet the speed and accuracy requirements of road semantics segmentation algorithm scenarios, a lightweight semantics segmentation model, MADNet, based on MobileNetV2, is presented, which effectively reduces the computational load of convolution neural network. The feature enhancement module uses a pooled pyramid of empty space convolution. In the deep and shallow part of the MADNet network, attention mechanism is added to compensate for the decline in feature extraction accuracy of MobileNetV2. Finally, the data enhancement algorithm is used to train the identification task in rain and snow weather, road depression and automobile dataset scenarios. The results of ablation test and algorithm comparison test verify that the algorithm proposed in this paper can achieve a better effect and faster speed for road depression and fast semantic segmentation of vehicles in rain and snow weather.
科研通智能强力驱动
Strongly Powered by AbleSci AI